검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates a vision-based autonomous landing algorithm using a VTOL-type UAV. VTOL (Vertical Take-Off and Landing) UAVs are hybrid systems that combine the forward flight capability of fixed-wing aircraft with the vertical take-off and landing functionality of multirotors, making them increasingly popular in drone-based industrial applications. Due to the complexity of control during the transition from multirotor mode to fixed-wing mode, many companies rely on commercial software such as ArduPilot. However, when using ArduPilot as-is, the software does not support the velocity-based GUIDED commands commonly used in multirotor systems for vision-based landing. Additionally, the GUIDED mode in VTOL software is designed primarily for fixed-wing operations, meaning its control logic must be modified to enable position-based control in multirotor mode. In this study, we modified the control software to support vision-based landing using a VTOL UAV and validated the proposed algorithm in simulation using GAZEBO. The approach was further verified through real-world experiments using actual hardware.
        4,000원
        2.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertical takeoff and landing (VTOL) drones are increasingly recognized as an important solution for last-mile delivery in the food and beverage sector, owing to their rapid deployment capabilities and high operational flexibility. In particular, growing interest in drone delivery services has been observed among fast food and coffee franchises, where rapid delivery is essential due to the time-sensitive nature of food and beverage items intended for immediate consumption. Despite this trend, there remains a lack of research on the structural modeling of flight routes for VTOL drones operating under automatic flight conditions, and on the implementation of first-come-first-served (FCFS) delivery services utilizing predefined flight routes. Accordingly, this study comprehensively describes the operations for food and beverage delivery services using VTOL drones. In particular, it addressed the use of multiple drones to conduct FCFS-type multi-point delivery services along fixed routes suitable for automatic flight.
        4,300원
        3.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anomaly detection technique for the Unmanned Aerial Vehicles (UAVs) is one of the important techniques for ensuring airframe stability. There have been many researches on anomaly detection techniques using deep learning. However, most of research on the anomaly detection techniques are not consider the limited computational processing power and available energy of UAVs. Deep learning model convert to the model compression has significant advantages in terms of computational and energy efficiency for machine learning and deep learning. Therefore, this paper suggests a real-time anomaly detection model for the UAVs, achieved through model compression. The suggested anomaly detection model has three main layers which are a convolutional neural network (CNN) layer, a long short-term memory model (LSTM) layer, and an autoencoder (AE) layer. The suggested anomaly detection model undergoes model compression to increase computational efficiency. The model compression has same level of accuracy to that of the original model while reducing computational processing time of the UAVs. The proposed model can increase the stability of UAVs from a software perspective and is expected to contribute to improving UAVs efficiency through increased available computational capacity from a hardware perspective.
        4,000원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertical takeoff and landing (VTOL) is a core feature of unmanned aerial vehicles (UAVs), which are commonly referred to as drones. In emerging smart logistics, drones are expected to play an increasingly important role as mobile platforms. Therefore, research on last-mile delivery using drones is on the rise. There is a growing trend toward providing drone delivery services, particularly among retailers that handle small and lightweight items. However, there is still a lack of research on a structural definition of the VTOL drone flight model for multi-point delivery service. This paper describes a VTOL drone flight route structure for a multi-drone delivery service using rotary-wing type VTOL drones. First, we briefly explore the factors to be considered when providing drone delivery services. Second, a VTOL drone flight route model is introduced using the idea of the nested graph. Based on the proposed model, we describe various time-related attributes for delivery services using drones and present corresponding calculation methods. Additionally, as an application of the drone route model and the time attributes, we comprehensively describe a simple example of the multi-drone delivery for first-come-first-served (FCFS) services.
        4,600원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on the path planning algorithm for large-scale autonomous delivery using drones and robots in urban environments. When generating delivery routes in urban environments, it is essential that avoid obstacles such as buildings, parking lots, or any other obstacles that could cause property damage. A commonly used method for obstacle avoidance is the grid-based A* algorithm. However, in large-scale urban environments, it is not feasible to set the resolution of the grid too high. If the grid cells are not sufficiently small during path planning, inefficient paths might be generated when avoiding obstacles, and smaller obstacles might be overlooked. To solve these issues, this study proposes a method that initially creates a low-resolution wide-area grid and then progressively reduces the grid cell size in areas containing registered obstacles to maintain real-time efficiency in generating paths. To implement this, obstacles in the operational area must first be registered on the map. When obstacle information is updated, the cells containing obstacles are processed as a primary subdivision, and cells closer to the obstacles are processed as a secondary subdivision. This approach is validated in a simulation environment and compared with the previous research according to the computing time and the path distance.
        4,000원
        6.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.
        4,000원