Toxic gas emissions are a critical global health concern, responsible for numerous deaths each year. These hazardous gases can cause severe physiological reactions and even death upon exposure. To address this issue, we propose a graphene-Kaptonbased flexible biosensor for non-invasive toxic gas detection. The sensor is designed to accurately detect and identify several harmful gases, including carbon monoxide (CO), fluorine azide ( FN3), hydrogen iodide (HI), nitrogen ( N2), methane ( CH4), nitrous oxide ( N2O), and ozone ( O3). Utilizing the Computer Simulation Technology (CST) Studio Suite 2024, we simulate the detection process, focusing on advanced techniques and miniature flexible structures. The sensor’s active element is a graphene patch embedded within a polyimide (Kapton) film, which allows for precise determination of the RF planar resonant structure’s frequency response. The graphene–Kapton biosensor is shown to have remarkable detection performance, as demonstrated by the results of the simulation, with a diffusivity of 9.09e−08[m2∕S] , an accuracy of 6.62e−13 , and a power loss of 1.5mW . These findings highlight the sensor’s potential as an effective tool for detecting and identifying toxic gases with high precision and efficiency.
Forward osmosis (FO) has emerged as one of the most promising technologies for seawater desalination. Despite the progress in membrane technology, draw solutions are still limited in terms of its reusability thereby hampering its economic viability. Hydrophilic ILs can be easily dissolved in water to constitute a DS. ILs are environmentally benign due to their high thermal stability and negligible vapor pressure. Hydrophilic ILs can be easily dissolved in water to constitute a DS. ILs are environmentally benign due to their high thermal stability and negligible vapor pressure. This work was supported by NRF funded by the Korea government funded by the Ministry of Science and ICT (2016R1A2B1009221 and 2017R1A2B2002109) and Ministry of Education (2009-0093816 and 22A20130012051(BK21Plus)).
Membrane fabrication is a critical area that hampers forward osmosis (FO) technology from industrialization. Herein, electrospun poly(vinyl alcohol) (PVA) nanofiber (NF) was used as a support layer for thin film composite (TFC) FO membrane. The PVA NF was incorporated with sulfonated graphene oxide (sGO). The oxygenous-rich sGO enhanced the hydrophilicity and mechanical strength of PVA NF as revealed by contact angle and tensile strength measurements, and pure water flux. On this support, the active polyamide layer was formed through interfacial polymerization. Meanwhile, FO performance of sGO/PVA TFC membrane is currently being evaluated. This work was supported by NRF of Korea funded by the Ministry of Science and ICT (2016R1A2B1009221 and 2017R1A2B2002109) and Ministry of Education (2009-0093816 and 22A20130012051 (BK21Plus)).