The carboxylated multi-walled carbon nanotubes (MWCNTs–COOH) were used as adsorbent for the separation of flavonoids (naringin and rutin) from bitter orange peel. The influence of the parameters such as, pH values, contact time, and desorption conditions was investigated. The samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetric, scanning electron microscopy, UV–Vis spectroscopy, and high-performance liquid chromatography. After separation and desorption process, the eluent was injected for chromatography analysis. Under the optimal conditions, experimental results showed that the extraction efficiency of rutin was higher than naringin and other compounds. Moreover, the desorption percentage of flavonoids was calculated 83.6% after four cycles. This research confirmed that this method for separation of flavonoids is simple and less cost. In addition, the separated flavonoids can be used as antioxidant for the future applications.
Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) was functionalized with 3-amino-5-phenylpyrazole (MWCNTs- f) and characterized by FTIR, EDX, SEM, XRD and TGA. The MWCNTs-COOH and MWCNTs-f were used for the adsorption of Cd(II), Hg(II), and As(III) ions from aqueous solutions. Additionally, to study the influence of pH, adsorbent dose, and initial ions concentration on the adsorption process, the central composite design (CCD) was applied. The quadratic model was used for analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Timedependent adsorption can be described by the pseudo-second-order kinetic model, and adsorption process was modeled by Langmuir isotherm for the adsorbents. Thermodynamic analysis showed that the adsorption of Cd(II), Hg(II) and As(III) ions were spontaneous and endothermic. Moreover, the competitive adsorption capacities of the heavy metal ions were slightly lower than noncompetitive ones. The same affinity order was observed under noncompetitive and competitive adsorption: As(III) > Cd(II) > Hg(II) in the case of MWCNTs-f. Desorption study revealed the favorable regeneration ability of adsorbents powders, even after three adsorption–desorption cycles.
In the present work, capability of thymolphthalein-grafted graphene oxide, which was successfully synthesized in this study, in stabilization of polypropylene against thermal oxidation were investigated and compared with that of SONGNOX 1010, a commercially used phenolic antioxidant for the polymer. The modified graphene oxide were incorporated into polypropylene via melt mixing. State of distribution of the nanoplatelets in the polymer matrix was examined using scanning electron microscopy and was shown to be homogeneous. Measurements of oxidation onset temperature and oxidative induction time revealed that thymolphthalein-grafted graphene oxide modifies thermo-oxidative stability of the polymer in the melt state remarkably. However, the efficiency of the nanoplatelets in stabilization of polypropylene against thermal oxidation in melt state was shown to be inferior to that of SONGNOX 1010. Furthermore, oven ageing experiments followed by Fourier transform infrared spectroscopy showed that the modified graphene oxide improves thermo-oxidative stability of the polymer strongly in the solid state, so that its stabilization efficiency is comparable to that of SONGNOX 1010.
Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-secondorder, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler- Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.
The attachment of 2-aminobenzamide to carboxylated multi-wall carbon nanotubes (MWCNTs)- COOH was achieved through the formation of amide bonds. Then, the functionalized MWCNTs, MWCNT-amide, were treated by phosphoryl chloride to produce MWCNT-quin. The products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, derivative thermogravimetric, steady-state fluorescence spectroscopy, and solubility testing. MWCNT-quin showed photo-electronic properties, which is due to the attachment of the 4-hydroxyquinazoline groups to them as proved by steady-state fluorescence spectroscopy. This suggests intramolecular interactions between the tubes and the attached 4-hydroxyquinazoline. The toxicity of the samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines, and the viable cell numbers were measured by 3-(4,5-dimethyl- 2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) after the cells were cultured for 24 h. Cellular investigations showed that the modified MWCNTs, particularly MWCNT- quin, have considerably significant toxic impact on SKBR3 as compared to HEK293 at the concentration of 5 μg/mL.