검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 53

        2.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We explore the latitudinal distribution of sunspots and pursue to establish a correlation between the statistical parameters of the latitudinal distribution of sunspots and characteristics of solar activity. For this purpose, we have statistically analyzed the daily sunspot areas and latitudes observed from May in 1874 to September in 2016. As results, we confirm that the maximum of the monthly averaged International Sunspot Number (ISN) strongly correlates with the mean number of sunspots per day, while the maximum ISN strongly anti-correlates with the number of spotless days. We find that both the maximum ISN and the mean number of sunspots per day strongly correlate with the the average latitude, the standard deviation, the skewness of the the latitudinal distribution of sunspots, while they appears to marginally correlate with the kurtosis. It is also found that the northern and southern hemispheres seem to show a correlated behavior in a different way when sunspots appearing in the northern and southern hemispheres are examined separately.
        4,000원
        4.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It has been established that the acoustic mode parameters of the Sun and Sun-like stars vary over activity cycles. Since the observed variations are not consistent with an activity-related origin, even Sun-like stars showing out-of-phase changes of mode frequencies and amplitudes need to be carefully studied using other observational quantities. In order to test whether the presumed relations between the global seismic parameters are a signature of the stellar activity cycle, we analyze the photometric light curve of HD 49933 for which the rst direct detection of an asteroseismic signature for activityinduced variations in a Sun-like star was made, using observations by the CoRoT space telescope. We nd that the amplitude of the envelope signi cantly anti-correlates with both the maximum frequency of the envelope and the width of the envelope unless super are-like events completely contaminate the light curve. However, even though the photometric proxy for stellar magnetic activity appears to show relations with the global asteroseismic parameters, they are statistically insigni cant. Therefore, we conclude that the global asteroseismic parameters can be utilized in cross-checking asteroseismic detections of activity-related variations in Sun-like stars, and that it is probably less secure and efective to construct a photometric magnetic activity proxy to indirectly correlate the global asteroseismic parameters. Finally, we seismically estimate the mass of HD 49933 based on our determination of the large separation of HD 49933 with evolutionary tracks computed by the MESA code and nd a value of about 1:2M and a sub-solar metallicity of Z = 0:008, which agrees with the current consensus and with asteroseismic and non-asteroseismic data.
        4,000원
        5.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It has been known that the global asteroseismic parameters as well as the stellar acoustic mode parameters vary with stellar magnetic activity. Some solar-like stars whose variations are thought to be induced by magnetic activity, however, show mode frequencies changing with di erent magnitude and phase unlike what is expected for the Sun. Therefore, it is of great importance to nd out whether expected relations are consistently manifested regardless of the phase of the stellar magnetic cycle, in the sense that observations are apt to cover a part of a complete cycle of stellar magnetic activity unless observations span several decades. Here, we explore whether the observed relations of the global seismic parameters hold good regardless of the phase of the stellar magnetic cycle, even if observations only cover a part of the stellar magnetic cycle. For this purpose, by analyzing photometric Sun-as-a-star data from 1996 to 2019 covering solar cycles 23 and 24, we compare correlations of the global asteroseismic parameters and magnetic proxies for four separate intervals of the solar cycle: solar minima 2 years, solar minima +4 years, solar maxima 2 years, and solar maxima +4 years. We have found that the photometric magnetic activity proxy, Sph, is an e ective proxy for the solar magnetic activity regardless of the phase of the solar cycle. The amplitude of the mode envelope correlates negatively with the solar magnetic activity regardless of the phase of the solar cycle. However, relations between the central frequency of the envelope and the envelope width are vulnerable to the phase of the stellar magnetic cycle.
        4,000원
        6.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We examine whether the solar eclipse effect is dependent on the geographic conditions under which the geomagnetic field variations are recorded. We concentrate our attention on the dependence of the solar eclipse effect on a number of factors, including, the magnitude of a solar eclipse (defined as the fraction of the angular diameter of the Sun being eclipsed), the magnetic latitude of the observatory, the duration of the observed solar eclipse at the given geomagnetic observatory, and the location of the geomagnetic observatory in the path of the Moon’s shadow. We analyze an average of the 207 geomagnetic field variation data sets observed by 100 INTERMAGNET geomagnetic nodes, during the period from 1991 to 2016. As a result, it is demonstrated that (1) the solar eclipse effect on the geomagnetic field, i.e., an increase in the Y component and decreases in the X, Z and F componenets, becomes more distinct as the magnitude of solar eclipse increases, (2) the solar eclipse effect is most conspicuous when the modulus of the magnetic latitude is between 30◦ and 50◦, (3) the more slowly Moon’s shadow passes the geomagnetic observatory, the more clear the solar eclipse effect, (4) the geomagnetic observatory located in the latter half of the path of Moon’s shadow with respect to the position of the greatest eclipse is likely to observe a more clear signal. Finally, we conclude by stressing the importance of our findings.
        4,000원
        7.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The presence of blue stragglers pose challenges to standard stellar evolution theory, in the sense that explaining their presence demands a complex interplay between stellar evolution and cluster dynamics. In the meantime, mass transfer in binary systems and stellar collisions are widely studied as a blue straggler formation channel. We explore properties of the Galactic open clusters where blue stragglers are found, in attempting to estimate the relative importance of these two favored processes, by comparing them with those resulting from open clusters in which blue stragglers are absent as of now. Unlike previous studies which require a sophisticated process in understanding the implication of the results, this approach is straightforward and has resulted in a supplementary supporting evidence for the current view on the blue straggler formation mechanism. Our main findings are as follows: (1) Open clusters in which blue stragglers are present have a broader distribution with respect to the Z-axis pointing towards the North Galactic Pole than those in which blue stragglers are absent. The probability that two distributions with respect to the Z-axis are drawn from the same distribution is 0.2%. (2) Average values of log10(t) of the clusters with blue stragglers and those without blue stragglers are 8.58 ± 0.232 and 7.52 ± 0.285, respectively. (3) The clusters with blue stragglers tend to be relatively redder than the others, and are distributed broader in colors. (4) The clusters with blue stragglers are likely brighter than those without blue stragglers. (5) Finally, blue stragglers seem to form in condensed clusters rather than simply dense clusters. Hence, we conclude that mass transfer in binaries seems to be a relatively important physical mechanism of the generation of blue stragglers in open clusters, provided they are sufficiently old.
        4,000원
        12.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We study an association between the duration of solar activity and characteristics of the latitude distribution of sunspots by means of center-of-latitude (COL) of sunspots observed during the period from 1878 to 2008 spanning solar cycles 12 to 23. We first calculate COL by taking the area- weighted mean latitude of sunspots for each calendar month to determine the latitudinal distribution of COL of sunspots appearing in the long and short cycles separately. The data set for the long solar cycles consists of the solar cycles 12, 13, 14, 20, and 23. The short solar cycles include the solar cycles 15, 16, 17, 18, 19, 21, and 22. We then fit a double Gaussian function to compare properties of the latitudinal distribution resulting from the two data sets. Our main findings are as follows: (1) The main component of the double Gaussian function does not show any significant change in the central position and in the full-width-at-half-maximum (FWHM), except in the amplitude. They are all centered at  11◦ with FWHM of  5◦. (2) The secondary component of the double Gaussian function at higher latitudes seems to differ in that even though their width remains fixed at  4◦, their central position peaks at  22.1◦ for the short cycles and at  20.7◦ for the long cycles with quite small errors. (3) No significant correlation could be established between the duration of an individual cycle and the parameters of the double Gaussian. Finally, we conclude by briefly discussing the implications of these findings on the issue of the cycle 4 concerning a lost cycle.
        4,000원
        14.
        2015.10 구독 인증기관·개인회원 무료
        1 2 3