Road construction and maintenance of deteriorated pavement has been continued since industrialization. Demand for aggregate with a good quality has been increasing from limited resources, but it is difficult to supply aggregates smoothly due to environmental protection regulations (Jo et al., 2015). Accordingly, efforts are being made in the road construction industry to utilize industrial products for the purpose of efficient use of resources and environmental preservation. Steel slag which contains a non-reactive CaO is used primarily as a material for embankment and soil covering depending on the expansion and environmental issues. On the other hand, steel slag shows a variety of performance improvements as including increased elasticity factors, increased indirect tensile strength, and improved plastic deformation resistance when handling the expansion issue with sufficient aging processing (Ali et al., 1991, Asi et al., 2007). In this study, the behavior characteristics of the slag asphalt concrete mixture were analyzed according to temperature to encourage the use of steel slag aggregate. Specimens with steel slag showed a higher initial strain than those with natural aggregates. But strain of specimens were nearly similar over the repeated temperature changes. The experimental results for specimens with these characteristics were less likely to cause the performance problems from temperature because the measured strains were relatively small than strain caused from other loads. In conclusion, it is necessary to design and construction process reflecting the behavior characteristics according to temperature to encourage the use of steel slag aggregate.
Recently in Construction field, It has been the big issues to produce an Eco-friendly Construction material and to solve problems about the First grade–Aggregates’ supply&demand. While the Eco-friendly Construction materials which are refurbished and reproduced from construction wastes and industrial by-products have a great deal of effectiveness such as cost or CO2 emission reduction, there is an additional logistical cost due to go through with some processes for recycle such as Intermediary treatments or management and collection of materials. Furthermore, Demand of the First grade-Aggregates is rising and spreading all over the nation for the improvement of Road driving performance, But there is also an additional logistical cost for supply&demand due to the cost of transport growth by sites of construction. In this study, the process and methodology of the new material supply and demand route routings using the Arc Gis Program and the calculation of the available distance through economic analysis are presented. After examining the cost status of construction materials and logistics costs by examining the literature review and related industry, economic feasibility was obtained by comparing the price of general construction materials with the total cost of comparable materials and logistics costs. After an economic analysis, ArcGis3.0 was used to visualize the materials’ supply&demand route and As a result, We can observe the economically secured route from the construction materials’ production plant to where the domestic transportable route and nodes mapped. Throughout the study, the pre-groundwork for an efficient use of the construction materials is able to be prepared and It will be helpful to invigorate supply&demand. In addition to the economic analysis in the future, If the real-time traffic information (traffic volume, speed, environment, etc.) and the performance (structure, functionality, etc.) of each construction materials are reflected, It will be possible to build a decision system for selecting construction materials which meet consumers’ various needs.