간행물

한국도로학회 학술대회 발표논문 초록집

권호리스트/논문검색
이 간행물 논문 검색

권호

2018년도 국제학술대회 논문초록집 (2018년 5월) 150

Session A_Asphalt-1

1.
2018.05 구독 인증기관·개인회원 무료
With interconnecting voids, porous asphalt provides drainage of rainwater in vertical and lateral direction during rainfall. In addtition, it also offers remarkable advantages compare to traditional asphalt: reduce vehicle splash and spray behind, reduce night time surface glare in wet season and increase tire-pavement friction...On the other hand, the following aspects are recognized as disavantages: reduced performance, winter maintenance issues and high construction cost. For flexible pavement, dynamic modulus master curve is an important parameter in the mechanistic-empirical pavement design guide. In this study, the results of experiment of dynamic modulus test of porous asphalt are discussed for understanding well about the viscoelastic characteristics of porous asphalt.
2.
2018.05 구독 인증기관·개인회원 무료
The paper presents various investigations conducted for evaluation of the performance of polymer combined Vacuum Tower Bottom (VTB) modified asphalt mixes by comparison with different modified mixes in the laboratory scale. In order to verify the possibility of polymer combined VTB as a modifier in the asphalt binder, one base unmodified binder and two different types of modified asphalt binders well known for their good performance in the field were compared in the laboratory scale by rheological performance tests. Frequency Sweep Test (FST) and Multi Stressed Creep and Recovery (MSCR) test with DSR (Dynamic Shear Rheometer) were performed and confirmed its good performance. Secondly, various performance tests were adopted for various modified asphalt mixtures with same aggregate gradation and asphalt binder content. As to evaluate the overall performance, crack resistance and durability of dense graded mixtures, Dynamic modulus tests, Semi Circular Bending (SCB) tests and Cantabro tests were conducted for different types of mixes, respectively. Variance tests and analysis concluded several results. In the case of binder, the polymer combined VTB modifier is the primary affecting factor in performance upgrade when comparing with other binder types including base binder. The modified effects on mixtures were clearly shown in all performance tests although performance ranking out of various test types were different. Dynamic modulus are higher at low temperature and high reduced frequency while smaller modification effects in high temperature and lower reduced frequency. According to SCB test results, fracture resistance could be better than other mix types while durability of them are relatively lower. It can be concluded that polymer base VTB modifier can be act as a good modifier with increasing stiffness and fracture energy from test results. However, there are a couple of concerns remained in terms of performance verification of modifier. Therefore it is required to conduct performance simulation with MEPDG and field verification test and monitoring performance.
3.
2018.05 구독 인증기관·개인회원 무료
In case of performing asphalt pavement overlay on existing concrete pavement layer, applying asphalt emulsion tack-coating or spreading prime-coating is considered to improve adhesion between asphalt and concrete layer. After coating work is done a curing process is considered not only for promoting evaporation process in coated (and/or spread) asphalt emulsion, but also for generating a membrane which can act as a bonding agent. Finally, asphalt overlay construction is performed when this curing process is completely done. However, during asphalt overlay construction process remarkable amount of spread tack-coating layer is lost due to asphalt material transfer vehicles (e.g. trucks, approximately 40~50% of total spread tack coating material is lost). In this paper, a new pavement equipment contains simultaneous asphalt emulsion spreading ability and corresponding construction techniques are introduced. Through applying this equipment, non-stop two step sequent working process: spreading asphalt emulsion on to existing concrete pavement layer then paving asphalt material for overlay construction, is available. During pavement working process temperature of asphalt material was kept with ranged between 130ºC and 170ºC. After performing field performance evaluation, it was found that crucial improvement in pavement layer adhesion, crack and rutting resistant ability were observed compared to the conventional paving method.
4.
2018.05 구독 인증기관·개인회원 무료
It is well known fact that the filed asphalt mixture is aged in the truck while hauling and queuing for one to four hours before dumping to the hopper of the paver. This aging, which is called short-term aging (STA), affect the physical and mechanical properties of asphalt mixture. For example, the maximum theoretical density of mixture is changed before and after STA. Therefore, when the asphalt mixture specimen is prepared for testing various physical and mechanical properties in laboratory, the mixture should be STA conditioned by a most-likely STA condition of the field. This is the reason why the STA should be performed properly. This study initiated to investigate STA conditioning protocols, set forth many agencies in the world, and to suggest a proper STA protocol which simulates field HMA condition as most likely as possible. According to this study, it was suggested that the blended loose mix for one specimen poured in a canister should be kept in a drying oven (no forced draft) without cap at 163±2℃ and for 70±15 min for normal HMA mix. This protocol was suggested based on that the absolute viscosity level of the recovered binder after STA should be a similar level of the same binder after a standard RTFO run.
5.
2018.05 구독 인증기관·개인회원 무료
Tram had been widely used in South Korea until 1960s; however, introduction of automobiles made the tram disappear. KRRI (Korea Railroad Research Institute) has developed wireless tram in order to enhance transporting capacity in large city. Continuously supported and embedded track system supports load from a wireless tram. The track system is composed of concrete slab or precast concrete and groove rail. Surface of the track is usually constructed by asphalt concrete. The asphalt concrete layer is about 5 cm in depth and constructed between rails of which width is 1435 mm. Adhesion between concrete slab and asphalt concrete layer and constructability, which affects performance, were investigated through actual construction and testing at test-bed. Four different types of mixtures and structures were used. After construction, adhesion tests were performed including basic material tests. Guss-asphalt with SMA showed the best adhesion and constructability.
6.
2018.05 구독 인증기관·개인회원 무료
There are some places such as bridges in the heavily industrialized area where the pavement should have a strong resistance against heavy axle loading and waterproof function. In those places, many polymer-modified asphalt (PMA) pavements were applied to protect premature cracking, severe rutting and water intrusion without success. Therefore, a much tougher pavement material with waterproofing function was developed for those places. This study evaluated important properties of the special type asphalt mixture which is highly condensed to be almost void-free condition. A high-quality PMA binder with PG82-34 grade was used for preparing the mixture and the optimum binder content was determined to allow near 0% air void in the mix design. The deformation strength(SD) by Kim Test and rut depth by wheel tracking test were measured at 60℃ as high temperature properties. The flexural strength and fracture toughness was measured at -10℃ as low temperature property. The void-free AC showed the higher performance in all four properties than any other asphalt concretes which were prepared for comparison. Therefore, it was shown that the normal concern about limiting air voids within 3-5% was just an apprehension. The void-free AC can be applied for heavy duty pavement on the bridge where the water-proofing function and higher rutting and cracking resistance are required.
7.
2018.05 구독 인증기관·개인회원 무료
If asphalt-aggregate mixture is produced at a high temperature, the mixture will suffer a significant higher shortterm aging (STA) due to the elevated temperature. The binder in that mixture will be oxidized (aged) more than expected during STA due to the highly elevated temperature. The STA at the high-temperature level is one of the reasons why the hot-mix asphalt (HMA) mixture shows many distresses in the early stage of service life. In this respect, adopting warm-mix asphalt (WMA) technology is another advantage in the asphalt pavement industry. In this study, various levels of STA were used to evaluate aging levels of the binder in the mixture before and after STA. A gel-permeation chromatography (GPC) test was performed on the mixture particles without binder recovery to estimate the significance of aging for each case of STA. Statistical analyses were carried out to determine the difference in aging levels among STA temperatures. Statistical test results found that the aging level of the binder after STA was significantly higher than that of binders before STA at an α = 0.05 level. It was also found that the aging level of binders in the WMA mixture was significantly lower than that of binders in HMA after STA at an α = 0.05 level. It was observed that if an HMA mixture was produced at high-temperature STA, its aging level was estimated to be approximately four years in service.

Session B_Concrete

8.
2018.05 구독 인증기관·개인회원 무료
This document gives a result of experiments on concrete using admixture Sikament® R4 combine with Sikacrete PP1. In developing countries, the development guides to build and set up a new infrastructure. In this case, the schedule of works is very important, which depends on the setting time of concrete structure. Specially, in tropical monsoon climate country, we need to use admixtures to increase the life time of constructions, especially concrete structures. Today, there are thousands of building, roads and bridges will be made. By using admixture, it not only helps to save the waiting time on the work site, but also increase quality of concrete structure. By using these good effects of admixtures, it’s necessary to find an optimal ratio of them in the mix design ingredient of concrete. The concrete strength can be controlled by changing a range of variety ratio of admixture in the mix design. This topic will find out the role of admixture and its relationship with the compressive strength of concrete.
9.
2018.05 구독 인증기관·개인회원 무료
In this study, the effect of dry shrinkage of concrete pavement due to seasonal changes was analyzed by comparing the results of finite element analysis with the temperature and strain measurements at Incheon airport pavement. To measure the behavior of slab by environmental condition in site, static strain gauges and thermometers were installed. To predict changes in the properties of concrete slab, experiments were conducted in site as well as in the lab. The considered parameters of FEA were pavement conditions according to seasonal and material properties change. The results of field measurements and the strain by FEA analysis were different in terms of the effects of drying shrinkage. This is due to humidity changes not applied to input values during FEA analysis. In this study, the difference between the results of field measurements and the results of the finite element model analysis was used to identify the drying shrinkage occurring on the concrete slab. Long-term data analysis in the future will enable the analysis of the trends in drying shrinkage in airport concrete pavement. This study was supported by Incheon International Airport Corporation(BEX00625).
10.
2018.05 구독 인증기관·개인회원 무료
In this study, proposed how to design an airport concrete pavement expansion joint considering the weather conditions and material properties. Currently, expansion joint spacing of airport concrete pavement in korea is not designed according to a clear standard, but it is designed to an empirical level. Various types of Admixture are used in concrete pavement and depending on the material characteristics or local environmental factors, there is a substantial difference in the extent and shrinkage to which the package is inflated. Significant differences are made in the extent to which the pavement expands or shrinkage depending on the material characteristics used or the local environmental factors. But, expansion joint design performed on empirical criteria cannot reflect these materials and environmental characteristics, resulting in unpredictable damage such as blow-up. To analyzing behavior of airport concrete pavement, horizontal displacement gauges, static strain gauges and thermometers are installed in the 3rd phase construction sites at Incheon International Airport. In this study, the relationship between the temperature and horizontal displacement of the concrete pavement was analyzed using the measured depth temperatures and the horizontal displacement data at the expansion joints at the Incheon airport site. The Finite Element Analysis Model of Incheon International Airport pavement was used to compare the difference between actual behavior and analytical behavior. In addition, it is proposed to design a suitable expansion joint spacing by considering the maximum expansion of concrete pavement and shrinkage caused by material expansion (e.g., ASR) and shrinkage due to water loss. This study was supported by Incheon International Airport Corporation (BEX00625).
11.
2018.05 구독 인증기관·개인회원 무료
Airport concrete slabs behave by combined loads including environmental loads and traffic loads. To analyze the behavior of concrete slabs by combined load, the dynamic strain gages were embedded at 2 depths(50mm, 450mm) and 3 locations(corner, Center and Mid-Edge). And the thermometers were embedded at 5 depths(50mm, 150mm, 250mm, 350mm, 450mm) in actual airport concrete slabs. HWD(Heavy Weight Deflectometer) is a device to measure the deflection by applying an impact load. The values calculated by the HWD test are deflection, ISM(Impact Stiffness Modulus), LTE(Load Transfer Efficiency). Concrete slabs tend to expand during the summer when the temperature is high, and contract during the winter when the temperature is low. In addition, the drying shrinkage occurs as age increases. Field HWD test were conducted in March, May, August, and November to examine seasonal and age-specific changes. Furthermore, the temperature difference between top and bottom of concrete slabs causes the curl-up and curl-down behavior. The test was conducted 3 times at 12o`clock, 16o`clock, 21o`clock, 3o`clock, 7o`clock to examine temporal changes. The strain of the slab at HWD strike was measured 500 times per second because the strain occurred instantaneously, and the temperature was measure 1 times per 10 minutes. The calculated values and the measured values varied according to environmental loads. In order to examine these values in various angles, the equivalent linear temperature difference obtained by converting the temperature by depth into the uppermost lowermost temperature difference, the temperature of the slab which changes seasonally as a whole, and the drying shrinkage which occurs as the age increases are considered. Therefore, the purpose of this study is to clarify the behavior of concrete slabs by combined load considering long - term drying shrinkage, annual variation of temperature, and daily variations. This study was supported by Incheon International Airport Corporation(BEX00625) and Korea Airports Corporation.
12.
2018.05 구독 인증기관·개인회원 무료
Currently, in Korea, the frequent damage of aged concrete pavements causes route blockages due to maintenance and repair works. Ultra-rapid cement has been used as a measure to solve the economic losses which result from traffic delays, accidents, and civil complaints due to blocked routes. However, now, it couldn’t be used except for urgent constructions because the price is expensive and its onsite application is complicated, hence, fast hardening admixtures are being used in ordinary cement to solve the problem with ultra-rapid cement. In this research, it is intended to develop a material which enables early opening of the road being constructed and cured within 24 hours of closure, to secure durability characteristics of early strength concrete by incorporating admixtures (silica fume, latex, polymer powder), and to find optimal mixing ratio and select the optimal variable for each material.
13.
2018.05 구독 인증기관·개인회원 무료
Roller-compacted concrete (RCC) has been widely used for construction of pavements [1]. The strength of RCCP can be obtained from not only hydration of binder but also the aggregate interlock resulted from roller-compaction [2]. For this reason, RCCP normally achieves higher strength compared to conventional concrete pavement with similar cement content. Even though RCCP can be provided a good structural performance, it has been difficult to verify the long-term performance though actual field construction. Therefore, this study aimed to investigate the fatigue characteristics and crack development in RCCP based on full-scale fatigue test and accelerated pavement test. In case of full-scale fatigue tests, fatigue behavior was evaluated by using 1 m × 1 m dimensional RCC slab specimens obtained from the field in order to consider the field variability. Fatigue equation derived from this study shows that the number of load repetitions which causes fatigue failure at the same stress level is slightly larger than that of PCA fatigue equation. In order to evaluate the performance of RCCP, two phases of accelerated pavement test (APT) were conducted. In phase one, the performance of RCCP at two different strengths (35.6 and 30.4 MPa) was evaluated. In phase two, the performance of RCCP with different thickness (5, 7.5 and 10 cm) was investigated. The number of load repetition of fatigue crack occurrence in each section was compared to the estimated fatigue failure determined from fatigue equation of RCCP. The crack development in each section was compared to the AASHTO crack model for JPCP. Overall, it was confirmed that RCCP has equal or better performance compared to JPCP the estimation in term of fatigue cracking. The fatigue equation from PCA and cracking model from AAHTO can be used on RCCP at certain design thickness range.
14.
2018.05 구독 인증기관·개인회원 무료
A number of roller-compacted concrete pavements (RCCP) have been constructed without saw-cut joints in order to save construction cost. Then it will allow natural cracks to randomly occur at the early age after concrete placement. Crack spacing of unjointed RCCP is crucial to ensure an adequate crack width and load transfer across the cracks since large crack spacing will result in excessive crack width and reduce load transfer efficiency that may be cause faulting, excessive deflection, and further cracking in RCCP slab. Due to pavement thickness, climatic condition, and material properties, unjointed RCCP may have different natural crack spacing. In this study, an analytical approach to predict natural crack spacing of an unjointed RCCP was developed. An analytical method based on elastic theory to calculate axial restraint stress using a bilinear slab-subbase interfacial constraint assumption was conducted. Curling stress induced by temperature gradient through the depth of the slab was also considered. The analytical model incorporates the environmental effect, strength gain and modulus of elasticity, coefficient of thermal expansion, drying shrinkage, base type materials, and slab geometries. The predicted crack spacing results obtained from the predictive model were validated through field measured data. The results showed a good agreement compared with crack spacing measured in the field. Furthermore, the result from a sensitive analysis using proposed predictive model showed that crack spacing increased when thickness of RCCP increased. The predicted crack spacing results may be used as input parameters to estimate crack widths in unjointed RCCP under given climatic condition, and material properties. If estimated crack width is excessive and cannot maintain an adequate load transfer across the cracks, saw-cut joints with an appropriate spacing should be provided in order to minimize crack width, and to prevent future cracking of RCCP leading to better performance.

Session C_New Technology

15.
2018.05 구독 인증기관·개인회원 무료
This paper evaluates the affection of steel slag in the asphalt mixtures for the self-healing purpose through microwave heating technique. Four different contents of steel wool fibers (SWF) were developed in hot mix asphalt and two types of aggregate were used: steel slag aggregate and normal aggregate. By using the infrared camera, the thermal distribution, as well as the optimum healing time of test samples, were recorded. All mixtures were evaluated their healing performance throughout 8 cycles. The substitution of about 30% normal coarse aggregate by steel slag is prominent due to its effect not only produces better healing performance but also enhances the whole mixture improve load-displacement trend with higher ductile behavior. The application of steel slag in HMA is a promising method which contributes toward the sustainable roadway development.
16.
2018.05 구독 인증기관·개인회원 무료
This study evaluated the effect of steel slag and steel wool fibers (SWF) on self-healing performance of asphalt mixture. The microstructure and distribution of SWF in mixture were examined by a computerized tomography scan and image analysis program. Thermal conductivity was investigated using the thermal constant analyser. The heating rate and healing performance were measured by induction heating system. The results showed the uneven distribution and the agglomeration in the mixtures when the content of fibers exceed a certain dosage. It was found that the mix with steel slag had higher heating rate than the mix with normal aggregate; however, its healing performance was slightly lower because of the breaking of weak steel slag. Finally, the mechanical test results indicated that SWF can enhance the resistance and prolong the fatigue life of asphalt mixtures.
17.
2018.05 구독 인증기관·개인회원 무료
Rice husk, in large quantities, is released to the environment due to rice production in Vietnam. If this material can be utilized, it can solve not only the economic issues but also the environmental problems and sustainable development of the country. Laboratory evaluation of asphalt mixture using Nano silica made from rice husk to improve rutting resistance of asphalt mixtures was presented in this study. A 60/70 bitumen was used as control asphalt binder. The ratio of Nano SIO2 used in this study was 0.3%, 0,6%, 0,9%, 1,2%, and 1,5% by weight of powder. A dense gradation with nominal maximum aggregate size of 12.5mm was used for the asphalt mixtures. Marshall stability (MS) test and wheel tracking (WT) test were conducted to evaluate the rutting resistance of asphalt mixtures. It was found that the asphalt mixtures using 0.5%, 1.0%, and 1.5% Nano SIO2 have the rut depths of 5.35mm, 5.39mm, and 5.45mm, respectively, which is 30%, 31% and 29% lower than the control asphalt mixtures at 15,000 load cycles. Moreover, the static modulus of asphalt mixtures using 0.9% Nano SIO2 at 60oC is higher than the control mixtures. Based on the results of this study, it can be concluded that the addition of Nano SIO2 into asphalt mixtures can enhance the rutting performance of asphalt concrete under high temperatures significantly. It is noted that these conclusions were based on only on a limited number of samples and conditions. Further studies must be conducted to investigate the effect of Nano SIO2 on fatigue cracking and moisture damage of asphalt pavement in the field.
18.
2018.05 구독 인증기관·개인회원 무료
In this thesis, it was considered that in durability characteristics of concrete pavements evaluation of strength characteristics as well as abrasion resistance is important as the domestic concrete pavements couldn't fulfill the public needs and cases of damage are increasing. In order to solve such problems, it is intended to compare the abrasion resistance in accordance with the mixing rate of admixtures (silica fume and polymer powder) which are incorporated in the upper layer of two-lift concrete pavement and find the optimum mixing rate for abrasion resistance by focusing on the high performance of concrete pavements through two-lift concrete pavements which use cellular sprayed concrete construction method. Both test results, which were performed based on ASTM C 779 B (dressing wheel abrasion test method) and ASTM C 944 (rotary cutter method) standards in accordance with silica fume and polymer powder mixing rate that was incorporated in the upper layer of two-lift concrete pavement, proofed that the abrasion resistance increased as the mixing rate of silica fume and polymer powder increased. However, it was also confirmed that if the mixing rate of admixtures is excessively increased it will not have an effect and it will rather decrease the abrasion resistance.
19.
2018.05 구독 인증기관·개인회원 무료
Fly ash is used as alumina-silicate resource material to reaction processing on geopolymer materials. The strength of material is belonging to alkaline liquid, fly ash, activity reaction of fly ash. Geopolymer concrete as non-toxic, bleed free and high strength material can be used for construction on rigid pavement. Study on influence of polypropylene fiber on performance characteristic of geopolymer concrete is considered. In this research, the mix proportion with fly ash and alkaline liquid is used to react on geopolymer concrete. The poly-propylene fiber in range from 0 to 0.5% by volume is added in mixture of geopolymer concrete. The ratio between length and diameter in range of 100-500 is investigated. The results are indicated that workability of fresh concrete is reduced by using poly-propylene fiber. The adding of poly-propylene fiber is significantly affected on characteristic of geopolymer concrete. Poly-propylene fiber can be distributed in fly ash matrix and reduced shrinkage of concrete during activation. After geopolymerization, compressive and the flexural strength of concrete produced with fibers are enhanced up to 10% and 20%, respectively. However, when the length to diameter ratio increases, compressive strength is tended to decrease with mixture using polypropylene fiber.
20.
2018.05 구독 인증기관·개인회원 무료
Historically, the two major aspects of road design have been (i) The design principles – like AASHTO 1993 Empirical Design or lately, Mechanistic Empirical Pavement Design Method (MEPDM) (ii) The materials & technologies of pavement construction The fundamental design principles have not undergone major changes, however, the advancement in materials and technologies have improved tremendously over last few decades and this makes it necessary to revisit some of the conventional concepts in road design. The new technology now challenges the conventional wisdom and has brought us to the threshold of an era of all new sustainable green roads of tomorrow. AASHTO 1993 Empirical Pavement Design is the basis for pavement design today; in most parts of the world. In some parts of the world, there is a movement towards Mechanistic Empirical Pavement Design Guideline (MEPDG), but the movement is slow and gradual as this approach is expensive and heavily dependent on software programs due to its inherent computational complexities. The concept of Structural Number and Layer Coefficients of pavement layers under AASHTO 1993 Empirical Pavement Design was derived from AASHO road test carried out in Ottawa, Illinois between 1958 & 1960. The conventional Layer Coefficient value of 0.44 which is used today was recommended considering the strength of the construction materials available at that time. But, in view of the new technology available now, this needs to be revisited. Secondly, AASHTO 1993 Empirical Pavement Design provides for assuming certain values for Drainage Coefficients, ranging between 0.4 to 1.4, based on certain criteria. It is quite common to assume a value of 1 for drainage coefficient, in most parts of the world. Now, with the advent of new nanotechnology for waterproofing of road layers, it is possible to consider higher values for drainage coefficients. The new nanotechnology for soil stabilization can make subgrade soils well bonded, strong and flexible, allowing the designer to assume higher values of Resilient Moduli in the AASHTO 1993 design equation, which may bring the required structural number down and allow a lighter design of cross-section of structural layers on top of the subgrade. Indicative calculations for a typical 100 MSA, two lane (10 m wide) highway show that the new technology, while remaining within the AASHTO 1993 design guidelines, enables designing a pavement that is 3 times better (it will now be a 300 MSA pavement instead of 100 MSA) with a cost reduction of about USD 114000 per km. This paper takes an overview of latest trends in USA regarding pavement design approaches. It also puts forth, the opportunities presented to a pavement designer, by the new nanotechnology and proposes a new design approach, for optimized pavement design - green, sustainable & economical; while remaining within the AASHTO 1993 guidelines or MEPDG.
1 2 3 4 5