검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        2.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.
        5,100원
        3.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y−1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.
        4,200원
        4.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning waste generated during the dismantling of a nuclear power plant has various types and radioactivity levels and is characterized by being generated in a large amount in a short time. For the safe and efficient management of decommissioning waste with these characteristics, the Korea Radioactive waste Agency (KORAD) is developing a large container for decommissioning waste. And the Waste Certification Program (WCP) requirement was developed for the development of a Waste certification program for nuclear power plant operators that can prove whether the transfer/ acceptance criteria are satisfied at the step of generation of decommissioning waste packages. The radioactive waste profile, which is a waste quality certification document required by the WCP requirements, allows the KORAD to confirm that the disposition suitability evaluation was performed for each process of decommissioning waste and radiological characteristic data were evaluated appropriately. Therefore in this study, in order to propose a draft of a radioactive waste profile for large packages of decommissioning waste, overseas cases and the draft radioactive waste profile of the WCP requirements was analyzed. In addition, it was attempted to increase the utility of the derived waste profile by clearly suggesting the treatment methods for each waste stream considering the physical and radioactive characteristics evaluation methods of large decommissioning waste packages. The proposed large decommissioning waste profile can be used in the future development of a nuclear power plant operator’s decommissioning waste certification program, as well as KORAD’s a disposal facility safety evaluation and improvement of the waste tracking management system (WTS).
        5.
        2022.05 구독 인증기관·개인회원 무료
        Radioactive waste disposal facility in Korea, radioactive waste packaged in 200 L drums is placed in a concrete disposal container and disposed of at an underground silo type (cave) disposal facility. At this time, the disposal container cover is seated on the top of the disposal container, and if the disposal container and the cover are not completely combined, the container cover is raised up from the top of the disposal container, so safety problems may occur when stacking the disposal container. Therefore, various methods exist to secure a margin for the pure height inside the disposal container. The disposal container cover only covers the upper surface of the container to shield radiation, and structural performance is not required. Therefore, the method of processing the cover, such as a method of making the cover of the disposal container thin, is the easiest method to apply. In this study, a method to reduce the thickness of the cover of a concrete disposal container was devised, and structural performance under usability conditions such as lifting and seating was analyzed. In addition, the disposal container cover has a reinforced concrete form in which dissimilar materials (concrete and steel) are combined, an integrated analysis was performed to secure the reliability of the analysis results for this, and the analysis results were described. It was found that the proposed disposal container cover structure can improve usability by reducing the stress concentration phenomenon.