검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 환경 요인을 바탕으로 절화용 국화 생장 예측을 위한 최적의 모델을 개발하는 것을 목표로 하였다. 이를 위해 13개의 모델(Linear Regression, Lasso Regression, Ridge Regression, ElasticNet Regression, K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Neural Network, Decision Tree, Random Forest, XGBoost, AdaBoost, CatBoost, Stacking)의 성능을 R2, MAE, RMSE를 평가 지표 로 비교하였다. 단일 모델 중에서는 Decision Tree가 가장 우수한 성능을 보였으며, R2값은 0.90에서 0.91 사이였다. 앙 상블 모델 중에서는 CatBoost가 가장 높은 성능을 보였으며 (R2=0.90~0.92) Random Forest와 XGBoost 또한 유사한 성 능을 보였다. 전체적으로 트리 기반 앙상블 모델이 국화 생장 예측에 적합한 모델로 나타났다.
        4,000원