검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2009.05 구독 인증기관·개인회원 무료
        Two entomopathogenic bacteria, Xenorhadus nematophila and Photorhabdus temperata temperata, are known to suppress immune responses of target insects by inhibiting eicosanoid biosynthesis. This study analyzed these bacterial metabolites in their effects on hemocyte-spreading behavior of the beet armyworm, Spodoptera exigua. Both bacterial culture broth significantly inhibited the hemocyte-spreading behavior, at which the culture broth derived from the stationary growth phase had the most potent effect. Three identified eicosanoid synthesis inhibitors (benzylideneacetone, PY and Ac-FGV) impaired the hemocyte-spreading behavior of S. xigua, at which benzylideneacetone was the most potent. These three compounds share a common chemical structure: a pentenebenzene ring. Alternation of this common structure resulted in significant loss of their inhibitory activity to the hemocyte-spreading behavior.