검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ainsliaea acerifolia, a perennial herbaceous plant endemic to forested regions of the Korean Peninsula, has drawn attention for its bioactive properties and potential as a functional food and medicinal resource. Despite its ecological and economic value, little is known about its spatial distribution or habitat preferences under changing climatic conditions. This study aims to quantify the current and future habitat suitability of A. acerifolia in southeastern Korea—including Gyeongsangnam-do, Busan, and Ulsan—using the MaxEnt (Maximum Entropy) species distribution model. A total of 217 presence records were compiled from both GBIF data and field surveys, and seven key environmental variables were selected through multicollinearity screening. Model performance was robust (mean AUC = 0.845), and key predictors included topographic roughness (TRI), precipitation of the driest month (Bio14), and mean diurnal range (Bio2). Under current climate conditions, 31.5% of the study area was identified as suitable habitat (≥0.222), with only 4.7% categorized as core habitat (≥0.6). Future projections under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios indicated substantial habitat contraction, particularly in coastal and lowland areas, with refugial zones likely to persist in mid-elevation inland mountains (500–900 m). These findings suggest that A. acerifolia is highly sensitive to climatic variability and emphasizes the urgent need for conservation strategies focused on climate-resilient refugia and ecological corridors. The study provides a spatial framework for species conservation planning under future climate uncertainty.
        4,300원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ainsliaea acerifolia leaves are registered with the Ministry of Food and Drug Safety as edible herbal materials in Korea, and research is underway to explore their potential in developing functional foods, cosmetics, and pharmaceuticals. In this study, we developed an analytical method using HPLC-DAD to quantify three key compounds—chlorogenic acid, isochlorogenic acid A, and 1,5-dicaffeoylquinic acid—in A. acerifolia leaves extract. This method has been optimized and validated for specificity, accuracy, precision, limit of quantification (LOQ), and linearity. The correlation coefficients (r²) for the calibration curves exceeded 0.9962. The limits of detection (LOD) and quantification (LOQ) were 0.3012 and 0.9128 μg/mL for chlorogenic acid, 0.1182 and 0.3582 μg/mL for isochlorogenic acid A, and 0.2342 and 0.7098 μg/mL for 1,5-dicaffeoylquinic acid, respectively. The net recovery rates for accuracy testing were 105.13% for chlorogenic acid, 105.37% for isochlorogenic acid A, and 100.37% for 1,5-dicaffeoylquinic acid. All parameters assessed with this newly developed method fell within the acceptable ranges specified by ICH guidelines. These findings demonstrate that the method is robust and reliable for accurately identifying and quantifying chlorogenic acid, isochlorogenic acid A, and 1,5-dicaffeoylquinic acid in both routine analysis and large-scale extraction process of A. acerifolia leaves.
        4,000원