The maize genome is complex with exceeding the levels of intra-specific variation, repetitive DNA content, and allelic content observed between many species. Because of tremendous diversity and variants, maize is considered as a forefront crop development and estimation of molecular markers for agricultural trait in genetics and breeding. Using quantitative trait loci (QTL) and marker assisted breeding (MAS), molecular breeders are able to development of drought tolerance and grain yield in maize genotype. To study QTL congruency, a meta QTL analysis including results from eight-teen QTL publications for grain yield and drought tolerance were considered. Among them, we assembled 420 QTLs for abscisic acid (ABA) concentration, anthesis silking interval (ASI), days to flower, days to silk, ear number, kernel number, grain number and grain yields, involved in drought tolerance and grain yield. The meta QTL analysis revealed significant evidence for linkage of these traits to 39 different segments as candidates regions on maize genome. A total of 571 marker was selected as QTL or integrated QTL markers for narrowing down the QTL region into specific functionally relevant candidates. The results of meta QTL analysis helped to refine the genomic regions of agricultural traits, interest described and provided the closest flanking markers.