검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        Korean innovative SMR has been implemented developing with improved safety/economy and i- SMR technology development project to secure a competitive edge in SMR. For nuclear power plants, according to the revision of the Nuclear Safety Act (2013.6), it is mandatory to be reflected in the aging management program of nuclear power plants, and the aging management and regulation of major nuclear power plants are being strengthened. For i-SMR, chemistry environment and management strategy is essential to mitigate corrosion and radiation fields, since it has compacted and integrated module designs. Since 1994, zinc injection into the reactor coolant system (RCS) has been applied more than 100 PWRs in the world to mitigate primary water stress corrosion cracking (PWSCC) and to reduce outof- core radiation fields. In domestic NPPs, 7 have been applying zinc injection and had up to 90% radiation field reductions. For this reason, SMR needs to apply zinc injection for chemistry strategy. Zinc target concentration will be 5~40 ppb at i-SMR, based on Ni-Fe-Cr materials as same as PWRs. Zinc injection location is in volume and purification control system between the volume control tank and charging P/P where the pressure is moderate. Zinc injection skid can consist of two micro-controllable pump (one for operation and one for stand-by) and one injection tank (batching tank for zinc solution). Zn, Ni, Si, Fe, and activated corrosion products should be monitored to identify zinc injection controls and trends. Flux mapping for core performance monitoring should be evaluated. The application of zinc will be essential and effective and bring sustainable reliability for corrosion control and mitigation strategy to meet the risk-free i-SMR development.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive products generated by long-term operation at NPP can become deposited on the surfaces of the system and equipment, leading to radiation exposure for workers during the decommissioning process. Chemical decontamination is one of the methods to reduce radiation exposure of workers, and there are HP CORD UV, CITROX, CAN-DECON. In the chemical decontamination process, organic acids are generally used, and representative organic acids include oxalic acid and citric acid. There are various methods for removing residual organic acid in decontamination liquid waste, such as using an oxidizing agent and an ion exchange methods. However, there is a problem in that oxidizing agent is used excessively or secondary wastes are generated in excess during organic waste treatment. However, when organic acid is decomposed using a UV lamp, the amount of secondary waste is reduced because it tis decomposed into CO2 and H2O. In this study, organic acid decomposition was evaluated as the contact time of the UV lamp. The experimental equipment consists of a UV reactor, a mixing tank, a circulation pump. The experimental conditions involved preparing 60 L of organic liquid waste containing oxalic acid, hydrogen peroxide and iron chloride. Test A was conducted using one UV reactor, and Test B was performed by connecting two UV reactors in series. As a result of the experiment, a decomposition rate of over 95% was shown after one hour for oxalic acid, and it was confirmed that the initial decomposition rate was faster as the contact time increases. Therefore, in order to increase the initial decomposition rate, it is necessary to increase the contact time of the UV lamp by connecting the UV reactors in series.