In this study, the explosion processes of the battery according to by heating was identified using complex sensors including temperature, infrared (IR), visible, and ultraviolet (UV) sensors. A safe chamber was prepared for the explosion of the batteries according to heating. In order to detect signals from the battery during heating, complex sensors including temperature, IR, visible, and UV sensors were used inside the safe chamber. The heating was increased from room temperature to 165℃ at 10℃/min and then, kept 165℃. During the heating was kept at 165℃, the battery was exploded and a temperature was increased up to 380℃ abruptly due to explosion of the battery. Before the battery was exploded, the signals of the sensors were not detected. However, during explosion of the battery, the signals of IR, visible, and UV sensors were strongly detected. By analyzing various signals of the these sensors, the explosion of the battery according to heating was investigated.
사용후핵연료의 파이로처리기술에 대한 국내외 특허동향을 분석하였다. 1975-2009년에 걸쳐 한국, 미국, 일 본 및 유럽연합에서 출원된 특허에 대하여 출원국별, 출원인별, 연도별 및 세부기술분야별로 구분하여 그 내 용을 비교함으로써 파이로처리기술 개발 현황을 분석하였다. 그리고 주요 출원인의 세부기술별 특허활동지수 로부터 특정분야의 기술개발 편중도, 분석대상 특허의 피인용횟수와 패밀리수로부터 각국의 기술 경쟁력을 조사하였다. 또 장차 파이로처리기술의 실용화에 대비하여 필수 요소기술들을 도출하고 그에 대한 현기술 수 준과 기술개발동향 등을 파악하였다.
고도산화공정(Advanced Oxidation Process, AOP) 중 하나인 펜톤 산화법은 과산화수소(H2O2)와 2가철 이온(Fe2+)이 반응하여 OH 라디칼을 생성함으로써 OH 라디칼의 강한 산화력으로 유기물을 분해하는 방법이다. 펜톤 산화는 다양한 유기물과의 높은 반응성을 지닌다는 점과 생물학적으로 분해가 어려운 물질을 산화・분해시켜 생물학적 처리가 가능하도록 한다는 등의 장점을 지니고 있다. 그러나 펜톤 산화는 유기물과의 반응 후 펜톤 슬러지를 부산물로 다량 생성하기 때문에 발생된 슬러지를 처리하는 공정이 추가적으로 요구된다. 또한, 펜톤 슬러지는 원수에 따라 다량의 난분해성 물질과 철염 등을 함유하고 있기 때문에 처리하는 방법이 까다롭다. 펜톤 슬러지는 주로 매립으로 처리하였으나 매립지 크기의 한계 및 수명 단축, 비싼 처리비용 등의 문제가 뒤따르기 때문에 이에 대한 대책이 필요한 실정이다. 이러한 펜톤 슬러지를 처리하고자 다양한 연구가 진행되고 있다. 그 중 펜톤 슬러지를 촉매, 응집제 등으로 재이용하는 연구가 각광받고 있다. 한 연구는 펜톤 슬러지를 산에 용해하여 그대로 펜톤 산화 공정에 사용하는 방법과 산에 용해하여 환원을 거친 후 펜톤 산화 공정에 사용하는 방법을 비교하였다. 재생 횟수를 고려했을 때 환원을 거친 펜톤 슬러지가 효율적인 촉매 역할을 한다고 나타났다. 또한, 대부분의 펜톤 슬러지 환원은 철편을 사용한 것으로 나타났다. 그러나 철편을 사용할 경우, 기존 펜톤 슬러지가 가지고 있는 총 철의 농도에 영향을 미칠 뿐만 아니라 회수하는 것 또한 어려움이 있다. 본 연구는 환원제를 사용하여 펜톤 슬러지 내 철 이온을 전환함으로서 펜톤 산화용 철 촉매로 재이용하고자 하는 기초연구이다. 본 연구에서는 다양한 황 계통의 환원제를 사용하여 펜톤 슬러지 내 철 이온 형태를 Fe3+에서 Fe2+로 전환하고 각각의 환원제 별로 철 이온 전환 정도를 비교하여 최적의 환원제를 찾고자 하였다. 본 연구에서 사용한 환원제는 Sodium sulfite (Na2SO3), Potassium sulfite (K2SO3), Sodium bisulfite (NaHSO3)로 총 3가지이다. 본 연구는 ‘D’ 산업용수센터에서 발생하는 RO 농축폐수를 펜톤 산화로 처리한 후 부산물로 생성되는 펜톤 슬러지를 대상으로 실시하였다. 펜톤 슬러지는 황산을 사용하여 용해액 상태로 전환하여 실험에 사용하였다. 슬러지 용해액 1 L를 기준으로 각각의 환원제를 0.5 g씩 투입 후, 2 시간까지의 철 이온 농도 변화를 살펴보았다.