Withthe increasing trend of global trades and protection of agro-ecosystem in importing and exporting countries against quarantine pest, quarantine and pre-shipment(QPS) fumigation in perishable commodities is now more important to maintain postharvest quality until delivering to end user not just eradiation of quarantine pest. However, there are limited use of MB fumigation on export fruits and vegetables due to phytotoxic damages of fumigated one.
VapormateTM, alternative to methyl bromide(MB), a gas formulation of ethyl formate(EF) with carbon dioxide, is commercially in use for imported fruits fumigation such as bananas and lemon. Herein, based on previous preliminary studies, scale-up and commercial scale fumigation of ethyl formate is presented for promising export paprika and tomato. Efficacy of ethyl formate was described in terms of concentration × time (CT) products to Myzus persicae for paprika and Bemisia tabaci for tomato.
Since Montreal protocol in1989 designated MB(methyl bromide) as ozone depleting chemicals, IPPC(International Plant Protection Convention) has adopted replacing the MB with alternative chemical and reducing the rate of MB use in plant quarantine in 2008. Pineapples are one of the most frequently fumigated imported fruit with MB in Korea. However, there was no technically available replacement. Therefore, we evaluated phosphine(PH3) fumigation as alternative to MB in applying pineapples.
In the preliminary test, PH3 gas in 12L desicators to calculate ranged to 0.1 from 2g/m3 was tested at 2 and 24hr exposure to target pest, citrus mealy bug(CMB, Planococcus citri). All different of stage of CMB was shown 100% mortality when 2g/m3 of PH3 applied for 24hrs at 8℃. To confirm studies designed in 0.5m3 fumigation chamber, all egg, nymph and adult stages of CMB was killed completely and there wasn’t any phytotoxic and quality damages on pineapples for 2 weeks post-fumigation periods at 8℃. In terms of commercial use, further commercial research will need to be carry out in cooperation with importers and fumigators.
The body and head lice (Pediculus humanus humanus and Pediculus humanus capitis, respectively) are hematophagous ectoparasites of humans and only the body louse between two is known to transmit three bacterial diseases through its feces. The proliferation profiles of Bartonella quintana, the causative agent of trench fever, inside the louse body and its excretion patterns were investigated in the two louse subspecies following oral challenge with B. quintana-infected blood meal. The initial density of B. quintana was sustained inside head lice without any noticeable proliferation for the entire period after infection. In contrast, B. quintana proliferated rapidly inside body lice and the maximum density reached at 10 days post-infection. The numbers of bacteria detected in feces from infected lice were almost the same and steadily decreased over time in both body and head lice. Nevertheless, the viability of the bacteria, as determined by fluorescence, was significantly higher in body louse feces, especially at 1 day post-infection and this tendency lasted for 11 days. These findings suggest that excretion of feces containing more viable B. quintana that is proliferated inside body lice following ingestion of infected blood meal is responsible for the higher vector competence of body lice.
Experimental measurements of flame shape and heat transfer characteristics were performed for impinged inverse diffusion flame(IDF) using propane as a fuel. The purpose of this study is to identify the favorable co-axial inverse diffusion flame structure for impingement heating. The flame consisted of an entrainment zone and mixing and combustion zone. The heat flux which represents heat transfer rate is measured by using a heat flux sensor that is located at the center of the impingement plate. The inverse diffusion flame structure has been classified into six modes. In these modes, several favorable flames for impingement heating were identified. In this study, the parameters are overall equivalent ratio(Φ), nozzle to impingement plate distance(h/d), vertical distance from the stagnation point and Reynolds number(Re) of combustion air.
The fuel test loop consisted an in-pile test section (IPS) and an out-pile system (OPS) is an nuclear fuel irradiation test facility installed in HANARO and its operating temperature and pressure are similar to those of commercial nuclear power plant’s. Penetration pipe connecting the IPS and OPS at the reactor concrete wall is supported by pool-wall pipe support. The existing pool-wall pipe support established in the HANARO have insulations even thought the leak tightness is not ensured. So, the need for an isolation of the insulations from the HANARO cooling water makes the existing pool-wall pipe support newly designed. In this study a structural evaluation for the pool-wall pipe support in accordance with the 2001 ASME B&PV Section III NF is implemented. The most critical primary and secondary stress intensities occur at the modified connection area of the main cooling water pipe and plate ring, but those values are less than the allowable stress. It is concluded that the existing pool-wall pipe support could be modified to a newly designed shape having an isolated insulation from a HANARO cooling water.
We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.
In-Pool By-Pass Pipe is a structure which connects the 2 In-Pool Pipes instead of In-Pile Test Section(IPS). It is designed to accommodate the 17.5 MPa and 80 ℃ under the consideration of the FTL pre-operation conditions but the need for high temperature, over 200 ℃, during FTL pre-operation make the additional assessment to be performed. For this study 2 models are used. One is an In-Pool By-Pass Pipe model which affected by HANARO water's elevation, another is an In-Pool By-Pass Pipe Nozzle which has 2 boundary conditions; water and air. After the heat transfer analysis linear stress analysis was performed to achieve Tresca stress. In the region of high stress model's detailed behavior is observed by ASME SectionⅢ NB code. Consequentially it concluded that the model of In-Pool By-Pass Pipe Structure is in reasonable agreement with those code.