Se-79, a fission product of uranium, is present in spent nuclear fuel. Selenium is volatilized from the spent nuclear fuel during the pretreatment of pyroprocessing, and a filter composed of calcium oxide can capture gaseous selenium in the form of CaSeO3. Because Se-79 has a long half-life (3.27E5 years) and selenite ions have high mobility in groundwater, they must be immobilized in a chemically stable form for final disposal. This study used a composition of 50 TeO2 - 10 Al2O3 - 10 B2O3 - 10 Na2O - 10 CaO - 10 ZnO (mol%). High-purity powders of TeO2, Al2O3, H3BO3, Na2CO3, CaCO3, and ZnO were used as glass precursors. The mixed powders were placed in alumina crucibles and melted in an electric furnace under an ambient atmosphere at 800°C for 1 h before being cast on a carbon mold. The obtained glasses were ground into fine powders and then mixed with CaSeO3 powders. The powders were melted in alumina crucibles at 800°C for 1 h. To simulate a seleniumcaptured calcium filter, CaSeO3 was synthesized by a precipitation method using sodium selenite (Na2SeO3) and calcium nitrate (Ca(NO3)2) solutions. The glass samples were analyzed by an X-ray diffractometer (XRD). Retention of Se in tellurite glasses was analyzed by an X-ray fluorescence spectrometer (XRF) and inductively coupled plasma (ICP). The chemical durability of tellurite glass was evaluated through the PCT method.
Pitch-based carbon fiber tows were prepared from naphtha cracking bottom oil by reforming and carbonization. The relationship between exothermic heat and carbon contents of the fiber was investigated by changing the carbonization conditions. The carbon contents and the crystallinities of isotropic pitch-based carbon fibers were 86.8~93.8 wt% and 33.7~40.1%, respectively, which were linearly proportional to the increase of carbonization temperature from 700 to 1000℃. The exothermic heat (temperature increase) of fiber tows was measured in a short time, which was also linearly proportional to the increase of carbon contents due to the increase of crystallinity, even though the crystallinity was low. Therefore, the carbon contents or carbonization degree of fibers can rapidly and indirectly be estimated by measuring the surface temperature increase of fibers.
To reveal effects of gamma-irradiation with various doses on the expressions of C4H and F5H genes, the transcription levels of OsC4HL and OsF5HL were investigated in leaves and stems of two rice cultivars, Ilpoombyeo and IR-29, after the irradiation with
Sprouty (Spry) genes encode inhibitors of the receptor tyrosine kinase signaling cascade, which plays important roles in stem cells. However, the role of Spry4 in the stemness of embryonic stem cells has not been fully elucidated. Here, we used mouse embryonic stem cells (mESCs) as a model system to investigate the role of Spry4 in the stem cells. Suppression of Spry4 expression results in the decreases of cell proliferation, EB formation and stemness marker expression, suggesting that Spry4 activity is associated with stemness of mESCs. Teratoma assay showed that the cartilage maturation was facilitated in Spry4 knocked down mESCs. Our results suggest that Spry4 is an important regulator of the stemness and differentiation of mESCs.
Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (γH2AX), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.
The objective of this study was to analyze the genetic diversity using SSR marker and investigate the fatty acid composition of perilla (P. frutescens var. frutescens) germplasm. Genetic diversity among 95 accessions, which consisted of 29 weedy types and 66 landrace accessions, was evaluated based on 12 SSR markers carrying 91 alleles. The mean values of observed (HO) and expected heterozygosities (HE) were 0.574 and 0.640, respectively, indicating a considerable amount of polymorphism within this collection. A genetic distance-based phylogeny grouped into two distinct groups, which were the landrace, moderate and weedy type, genetic distance (GD) value was 0.609. The physicochemical traits about crude oil contents and fatty acid compositions were analyzed using GC. Among tested germplasm, the total average oil contents (%) showed a range from 28.57 to 49.67 %. Five fatty acids and their contents in the crude oils are as follows: α-linolenic acid (41.12%-51.81%), linoleic acid (15.38%-16.43%), oleic acid (18.93%-27.28%), stearic acid (2.56%-4.01%), and palmitic acid (7.38%-10.77%). The average oil content of wild types was lower than landrace, and the oil content of middle genotype accessions was higher than other germplasm, but no significant variation between landrace and wild types was shown. Nevertheless, IT117174, landrace of Korea, was highest in crude oil content (47.11%) and linolenic acid composition (64.58%) among the used germplasm. These traits of the selected accessions will be helped for new functional plant breeding in perilla crop.
Buckwheat (Fagopyrum esculentum Moench), one of the minor crops grown in Korea belonging to the Polygonaceae family, is an annual crop widely cultivated in Asia, Europe, and America and has a character of outcrossing and self-incompatibility. The objective of this study was to analyze the genetic variability, phylogenetic relationships and population structure of buckwheat landraces of Korea using SSR markers. Ten microsatellite markers have been detected from a total of 79 alleles among the 179 buckwheat accessions were collected from Korea. The number of allele per marker locus (NA) ranged from 2 (GB-FE-001, GB-FE-043 and GB-FE-055) to 31 (GB-FE-035) with an average of 7.9 alleles. GB-FE-035 was the most polymorphic with the highest PIC value 0.93. Major allele frequencies (MAF) for the 10 polymorphic loci varied from 0.12 to 0.97 with a mean allele frequency of 0.57. The expected heterozygosity (HE) values ranged from 0.05 to 0.94 with an average of 0.53. The observed heterozygosity (HO) ranged from 0.06 to 0.92 with an average of 0.42. The overall polymorphic information contents (PIC) values ranged from 0.05 to 0.93 with an average of 0.48. The landrace accessions of buckwheat used in the present study were not distinctly grouped according to geographic distribution. The study concludes that the results revealed genetic differentiation was low according to the geographic region because of outcrossing and self-incompatibility. We reported that our analyses on the genetic diversity of common buckwheat cultivars of Korea were performed by using of microsatellite markers.
FORTRAN program PHYLS was developed to model the structures of 2:1 1M and 2M1 phyllosilicates on the basis of geometrical analyses. Input to PHYLS requires the chemical composition and d(001) spacing of the mineral. The output from PHYLS consists of the coordinates of the crystallographically independent sites in the unit cell, and such structural parameters as the cell dimensions, interaxial angle, cell volume, interatomic distances, and deformation angles of the polyhedra. PHYLS can generate these structural details according to the user's choice of space group and cation configuration. User can choose one of such space groups as C2/m, C2,and C2/c and such cation configurations as random and ordered tetrachedral/octahedral cation configurations. PHYLS simulated the structures of dioctahedral and trioctahedral phyllosilicates having random tetrahedral cation configuration fairly close to the reported experimentally determined structures. In contrast, the simulated structures for ordered tetrahedral cation configurations showed greater deviation from the experimentally determined structures than those for random configurations. However, if the cations were partially ordered and the sizes of the tetrahedra became similar, the simulated PHYLS may be helpful in various investigations on the relationships between structures and physicochemical properties of the phyllosilicates.