The Wolbachia bacterium is known to induce reproductive anomalies in various insect taxa such as cytoplasmic incompatibility, feminization, male killing and parthenogenesis. It is hypothesized that the degree of reproductive anomalies is dependent on the bacterial infection density. In this study, we attempted to test the hypothesis using the tiny egg wasp, Trichogramma kaykai that has served as the model system of parthenogenesis where an unfertilized egg develops into a female due to the bacterial infection. So far this is only found in haplodiploid organisms. The results show that 1) as mothers aged, they started producing male offspring, 2) the sex ratio was negatively correlated with the bacterial infection density, 3) female offspring were more than six times heavily infected with Wolbachia than male offspring in the species. In conclusion, female offspring production, parthenogenesis, is as a function of the Wolbachia bacterial density in this species.