The purpose of this study was to compare the ring lock type knee-ankle-foot orthosis (KAFO) with newly developed 4-bar linkage KAFO on the gait characteristics of persons with poliomyelitis clinically. This 4-bar linkage is the stance control type KAFO which provide the stability during stance phase and knee flexion during swing phase. Two subjects participated in this study voluntarily. We provided the customized 4-bar linkage KAFO then asked the subjects to walk in level surface and stairs under the two different KAFO conditions. The characteristics of gait in the persons with poliomyelitis were evaluated using a 3D motion analysis system and force plate. Additionally 6 minute walk test for physiological cost index were conducted using pulse oximeter to measure the energy consumption. In the results of this study, the differences of 4-bar linkage KAFO compared with ring lock type KAFO are as follows: (1) Walking speed, stride length, and step length on level increased in subjects, (2) The gait symmetry was improved by generated knee flexion and decreased pelvic external rotation on level and stairs walking, (3) Decreased vertical excursion of center of mass and pelvic elevation during swing phase was decreased on level, (4) Knee extension moment, hip flexion moment, hip and knee internal rotation moment of non-braced limb were decreased on level walking, (5) Walking speed in 6-minute walk test was increased and physiological cost index was decreased. These findings indicate that 4-bar linkage KAFO compared with ring lock type KAFO is effective in enhancing pattern, endurance, and energy consumption in level surface and stairs walking.
With the introduction of the video display terminal (VDT), the efficiency and productivity of work has improved. However, VDT syndrome is threatening the health of workers as a side effect of prolonged use of a VDT. Among various VDT syndromes, the musculoskeletal disorder, especially, the cumulative trauma disorder (CTD) is the common research topic related with upper extremities function. The aim of this study was to investigate the effect of the wrist-hand orthosis (WHO) on fatigue in middle deltoid, anterior deltoid, serratus anterior, and upper trapezius during one-hour computer keyboard typing. Twelve healthy subjects participated in this study. Surface electromyography was used to assess the localized muscle fatigue (LMF), and the LMF was calculated at 10 minutes, 20 minutes, 40 minutes, and 60 minutes in each muscle, with and without the WHO. Data were analyzed by paired t-test with a level of significance of .05. The results of this study are as follows: 1) At 10 minutes, the LMF decreased significantly with applied WHO in the middle deltoid, anterior deltoid, and upper trapezius (p=.001, p=.026, p=.019, respectively). 2) As the computer keyboard typing period increased, there were no significant LMF differences, except for the upper trapezius. Therefore, it can be concluded that the WHO can be applied to decrease the LMF for the initial 10 minute period in the middle deltoid, anterior deltoid, and upper trapezius' but that the long term effect of WHO in reducing the LMF was proven only in upper trapezius during continued computer keyboard typing.
This study examined the effects of socket flexion angle in trans-tibial prosthesis on stump/socket interface pressure. Ten trans-tibial amputees voluntarily participated in this study. F-socket system was used to measure static and dynamic pressure in stump/socket interface. The pressure was measured at anterior area (proximal, middle, and distal) and posterior area (proximal, middle, and distal) in different socket flexion angles (5°, 0°, and 10°). Paired t-test was used to compare pressure differences in conventional socket flexion angle of 5° with pressures in socket flexion angles of 0° and 10° (α=.05). Mean pressure during standing in socket flexion angle of 10° decreased significantly in anterior middle area (19.7%), posterior proximal area (10.4%), and posterior distal area (16.3%) compared with socket flexion angle of 5°. Mean pressure during stance phase in socket flexion angle of 0° increased significantly in anterior proximal area (19.3%) and decreased significantly in anterior distal area (19.7%) compared with socket flexion angle of 5°. Mean pressure during stance phase in socket flexion angle of 10° decreased significantly in anterior proximal area (19.6%) and increased significantly in anterior distal area (8.2%) compared with socket flexion angle of 5°. Peak pressure during gait in socket flexion angle of 0° increased significantly in anterior proximal area (23.0%) compared with socket flexion angle of 5° and peak pressure during gait in socket flexion angle of 10° decreased significantly in anterior proximal area (22.7%) compared with socket flexion angle of 5°. Mean pressure over 80% of peak pressure (MP80+) during gait in socket flexion angle of 0° increased significantly in anterior proximal area (23.9%) and decreased significantly in anterior distal area (22.5%) compared with socket flexion angle of 5°. MP80+ during gait in socket flexion angle of 10° decreased significantly in anterior distal area (34.1%) compared with socket flexion angle of 5°. Asymmetrical pressure change patterns in socket flexion angle of 0° and 10° were revealed in anterior proximal and distal region compared with socket flexion angle of 5°. To provide comfortable and safe socket for trans-tibial amputee, socket flexion angle must be considered.