검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.11 구독 인증기관·개인회원 무료
        Hydride reorientation is widely known as one of the major degradation mechanisms in Zirconium cladding during dry storage. Some previous theoretical models for hydride reorientation used assumption of an ideal radial basal pole orientation for HCP structure of Zirconium cladding. Under this assumption, circumferential hydride was considered to precipitate in the basal plane while radial hydride was considered to precipitate in the prismatic plane, thereby giving energetical penalty on thermodynamical precipitation of radial hydrides. However, in reality, reactor-grade Zirconium cladding exhibits average 30° tilted texture, adding complexity to the hydride precipitation mechanism. In this study, reactor-grade Zirconium cladding was charged with hydrogen and hydride reorientation -treated specimens were fabricated. Microstructural characterization of hydrides was conducted via following three methods in terms of interface and stored energy. And this study aimed to compare these characteristics between circumferential and radial hydrides. Using Electron Back Scattered Diffraction (EBSD), the interface was investigated assuming that interface lies parallel to the axial axis of the tube. These were further validated with Transmission Electron Microscope (TEM). In addition, Differential Scanning Calorimetry (DSC) analysis was conducted to calculate the stored energy. This investigation is expected to establish fundamental understanding of how hydrides precipitate in Zirconium cladding with different orientations. And it will also increase the predictability of radial hydride formation and help understanding the mechanical behavior of Zirconium cladding with radial hydrides.