This study focused on the genomic analysis of Anopheles kleini and Anopheles pullus, both vectors of vivax malaria within the Anopheles Hyrcanus group. Using Illumina NovaSeq600 and Oxford Nanopore platforms, we identified 126 and 116 contigs, along with 40,420 and 32,749 genes from An. kleini and An. pullus, respectively. The assembled genome sizes were 282 Mb for An. kleini and 247 Mb for An. pullus, which are within a similar range to the sizes previously estimated by digital PCR (249 Mb and 226 Mb). We are currently also estimating the genome sizes of other Anopheles spp. and manually curating key genes determining vectorial capacity.
Parasites have co-evolved with their host for a long period of time, resulting in unique parasitic systems tailored to each host species. This makes them suitable for research on physiological function control through cross-species molecules like miRNA. The body louse, a vector of bacterial pathogens, is particularly valuable as a model insect due to their frequent feeding on human blood, which results in the continuous ingestion of human-derived miRNA and injection of salivary gland-derived miRNA into the human body. In this study, we conducted miRNA sequencing on body lice with mixed stages and identified 105 miRNAs, including 50 novel miRNAs. Sequence analysis of human miRNAs remaining in body lice and the functional analysis of these miRNAs are in progress.
The recent increase in the occurrence of common bed bug and tropical bed bug in shared areas highlights the need for rapid species identification at infestation sites, which is crucial for implementing targeted control measures due to differences in genetic and physiological traits. In this study, molecular diagnostic methods were developed using species-specific ITS2 sequences. Both multiplex PCR and loop-mediated isothermal amplification (LAMP) protocols with a DNA release method successfully distinguished between the two bed bug species regardless of developmental stages in 0.5~2.5 hours, even with dead specimens. Especially, LAMP's simplicity and speed make it applicable for rapid and accurate bed bug diagnosis at infestation sites.