In order to develop a high cellulolytic direct-fed microorganism (DFM) for ruminant productivity improvement, this study isolated cellulolytic bacteria from the rumen of Holstein dairy cows, and compared their cellulolytic abilities via DM degradability, gas production and cellulolytic enzyme activities. Twenty six bacteria were isolated from colonies grown in Dehority’s artificial (DA) medium with 2%
agar and cultured in DA medium containing filter paper at 39℃ for 24h. 16s rDNA gene sequencing of four strains from isolated bacteria showed that H8, H20 and H25 strains identified as Ruminococcus flavefaciens, and H23 strain identified as Fibrobacter succinogenes. H20 strain had higher degradability of filter paper compared with others during the incubation. H8 (R. flavefaciens), H20 (R. flavefaciens), H23 (F. succinogenes), H25 (R. flavefaciens) and RF (R. flavefaciens sijpesteijn, ATCC 19208) were cultured in DA medium with filter paper as a single carbon source for 0, 1, 2, 3, 4 and 6 days without shaking at 39℃, respectively. Dry matter degradability rates of H20, H23 and H25 were relatively higher than those of H8 and RF since 2 d incubation. The cumulative gas production of isolated cellulolytic bacteria increased with incubation time. At every incubation time, the gas production was highest in H20 strain. The activities of
carboxymethylcellulase (CMCase) and Avicelase in the culture supernatant were significantly higher in H20 strain compared with others at every incubation time (p