The background of the development is to contribute to the reduction of radioactive waste, recycling of resources and effectively purifying the air in the workplace. Ultimately, it affects the reduction of internal exposure of workers. According to the standard procedure of KHNP,「Use and Management of Respiratory Protection Equipment」, the expiration date of mask filter is indicated by the manufacturer before opening. It is 1 year from the date of first combination after opening. We have developed an air purifying equipment that can recycle and reuse expired mask filter waste in nuclear power plant. In order to confirm the performance, we observed air pollution level by operation time. The location was measured at 3 locations including the decontamination product warehouse in NPP, and the size of the measurement locations were 53 m3, 150 m3, 180 m3, and 900 m3. As a result of measurement, significant air purification effect was found in 53 m3 and 150 m3. Decontamination effect of 80% was shown after 1 hour of operation, and 20% of decontamination effect was shown gently for 3 hours thereafter. On the other hand, there was no significant decontamination effect in the 180 m3 and 900 m3 spaces. Significant results were derived by statistical methods. Statistical procedure involves the collection of data leading to test of the relationship between two statistical data sets, or a data set and synthetic data drawn from an idealized model. The basic composition and product characteristics was as follows: Blower, filter fixing unit, Air purifier outlet round shape, Differential pressure gauge, inverter (200 V, 3π, 200 W). The developed product weigh is 25 kg. This is lighter than the existing product weighing 100 kg. It is judged that it is suitable for convenient use. Because the area where the major air pollution level occurs is isolated by a room in NPP. This developed product has a greater significance in that it recycles radioactive waste within the radiation management area rather than air purification efficiency.
The objective of this study was to determine the anti-diabetic effect of the water extract of Neolentinus lepideus in a diabetic mouse model. Seven-week-old C57BL/KsJ-db/db mice were fed either a control diet (CD) or diet supplemented with 1% or 5% of N. lepideus water extract (NLWE1 or NLWE5) for 10 weeks. Oral administration of NLWE significantly decreased the body weight gain compared to that of CD-fed group. Mice in the NLWE group had significantly lower levels of fasting serum glucose, fatty acids, and low-density lipoprotein cholesterol compared to those in the control group. These effects were accompanied by reduced fatty liver and improved glucose tolerance in the NLWE group. Taken together, these results suggest that N. lepideus might have potential as a dietary supplement to control diabetes.