Hedgehog (Hh) pathway plays a key role in development from invertebrate to vertebrate. It is known to be involved in cell differentiation, polarity, proliferation, including the development of vertebrate limb and the establishment of flies’ body plan. To investigate how the regulation of Hh pathway affects the development of parthenogenetic murine embryos, the parthenogenetically activated murine embryos were treated with either cyclopamine (Cyc), an antagonist of Hh pathway, or purmorphamine, an agonist of Hh pathway. While Cyc did not affect the blastocyst formation and its total cell number, the chemical reduced the hatching rate of embryos and the expression levels of Fn1 mRNA. The results of the present study show the possibility that Cyc may affect the development of embryos at blastocyst stage by blocking Hh pathway and this may cause detrimental effect to the embryos at peri-, and post-implantation stages.
Polo-like kinase 1 (Plk1) has been known to be a critical element in cell division including centrosome maturation, cytokinesis and spindle formation in somatic, cancer, and mammalian embryonic cells. In particular, Plk1 is highly expressed in cancer cells. Plk1 inhibitors, such as BI2536, have been widely used to prevent cell division as an anticancer drug. In this study, the fertilized murine oocytes were treated with BI2536 for 30 min after recovery from the oviduct to investigate the effect of down-regulation of Plk1 in the in vivo-fertilized murine embryos. Then, the localization and expression of Plk1 was observed by immunofluorescence staining. The sperm which had entered into the oocyte cytoplasm did not form male pronuclei in BI2536-treated oocytes. The BI2536-treated oocytes showed significantly lower expression of Plk1 than non-treated control group. In addition, alpha-tubulin and Plk1 gathered around sperm head in non-treated oocytes, while BI2536-treated oocytes did not show this phenomenon. The present study demonstrates that the Plk1 inhibitor, BI2536, hinders fertilization by inhibiting the formation of murine male pronucleus
Sonic hedgehog (Shh) signaling pathway plays a key role in the development of various vertebrate embryos and remains important in adults. Although Shh signaling pathway has widely been studied in post-implantation stage embryos, only few studies are reported about pre-implantation stage embryos. To investigate the effect of Shh on pre-implantation stage embryos, cyclopamine and purmorphamine were treated to embryos in culture. Cyclopamine acts as an antagonist of the hedgehog signaling because it has a high affinity to Smoothened, a key part of the hedgehog signaling pathway. On the other hand, purmorphamine activate Smoothened and acts as a Shh signaling agonist. The oocytes were collected after superovulation and parthenogenetically activated in Chatot, Ziomek, and Bavister medium (CZB) including 10 mM strontium for 5 hr. The activated oocytes were cultured in potassium simplex optimized medium (KSOM), KSOM with 5 uM of cyclopamine, KSOM with 1 uM of purmorphamine, or KSOM with both 5 uM of cyclopamine and 1 uM of purmorphamine. After 5.5 days in culture, there was no significant difference in blastocyst development among the four experimental groups. However, the hatching rate was increased in the groups containing purmorphamine, and the blastocysts of the purmorphamine-containing groups had higher total cell number than those of other two groups when the cells were counted after Hoechst33342 staining. Quantitative real-time PCR (qRT-PCR) shows the difference of gene expression level which are related to epithelial-mesenchymal transition (EMT). Taken together, this study suggests that the increase of Shh has an effect on the increases of EMT-related genes and hatching rate of pre-implantation stage embryos, and this may improve implantation subsequently.
Polo-like kinase 1 (Plk1) has multiple roles in somatic cell and mammalian oocyte division. In mice, Plk1 distributes to the centromeres from prophase to anaphase and compose spindle apparatus in mitosis stages. Somatic cell nuclear transfer (SCNT) has diverse advantages. However, low cloning efficiency of SCNT procedure causes difficulty to application. The causes of this low efficiency are still unclear. However, they are attributed to the cumulative results of several biological and technical factors. In this study, Plk1, a biological factor, was investigated. B6D2F1 mice (7 weeks old) were superovulated with 10 IU of pregnant mare’s serum gonadotropin and 9 U of human chorionic gonadotropin (HCG) 48 hr later. The oocytes were collected 14 hr after HCG injection and cultured on potassium simplex optimized medium. The BI2536, Plk1-specific inhibitor, was used to understand the influence of Plk1. Also, the embryos were assessed by immunofluorescence. All BI2536-treated embryos failed to the first mitotic division. It showed Plk1 has a critical role in the first mitotic division of the mouse embryo. Moreover, there were significant differences between the control and SCNT embryos in the patterns of Plk1. All SCNT embryos which failed 2-cell development presented incorrect positioning and low expression of Plk1. On the other hand, the control embryos which failed to 2-cell division showed only low expression of Plk1. Taken together, this results demonstrate that Plk1 is critical for successful mitotic division of mouse embryos. Also, correct localization of Plk1 has crucial effect in the development of murine SCNT embryos.
The Somatic cell nuclear transfer (SCNT) method can be applied to various fields such as species conservation, regenerative medicine, farming industries and drug production. However, the efficiency using SCNT is very low for many reasons. One of the troubles of SCNT is that it is highly dependent on the researcher’s competence. For that reason, four somatic cell nuclear injection methods were compared to evaluate the effect of hole-sealing process and existence of cytochalasin B (CB) on efficiency of murine SCNT protocol. As a results, the microinjection with the hole-sealing process, the oocyte plasma membrane is inhaled with injection pipette, in HCZB with CB was presented to be the most efficient for the reconstructed in SCNT process. In addition, we demonstrated that the oocytes manipulated in Hepes-CZB medium (HCZB) with CB does not affect the developmental rate and the morphology of the blastocyst during the pre-implantation stage. For this reason, we suggest the microinjection involving hole-sealing in HCZB with CB could improve SCNT process efficiency.
Polo-like kinase 1 (plk1) shows multiple events of somatic cell and mammalian oocyte division. In mice, Plk1 distributes to the centromeres from prophase to anaphase and compose spindle apparatus at different stages of mitosis in spindle organization. Somatic cell nuclear transfer (SCNT) has a number of advantages however it is difficult to apply to basic or translational researches due to its low cloning efficiency. The causes of this low cloning efficiency are unclear. However, they are attributed to the cumulative results of several biological and technical factors. In this study, a biological factor plk1 was investigated. B6D2F1 mice (7–8 weeks old) were superovulated with 10 IU of pregnant mare’s serum gonadotropin and 9 U of human chorionic gonadotropin (HCG) 48 hr later. The oocytes were then collected 14 hr after HCG injection and cultured on potassium simplex optimized medium (KSOM). The plk1-specific inhibitor BI2536 was used to understand the influence of plk1. The 2-cell stage embryos were assessed by fluorescence immunoassay. In consequence, all BI2536-treated embryos failed in the first mitotic division which showed plk1 have critical role in the first mitotic division of the mouse embryo. SCNT requires enucleation of oocyte and injecting a donor cell into the enucleated cytoplast. In this process, a respectable amount of plk1 that co-localize with nucleus may be removed together. Fluorescence immunoassay and qPCR were used to monitor the change of plk1 level during SCNT. There was significant difference between the control and enucleated embryos in the level of plk1. In all division-failure 2-cell embryos, incorrect positioning of plk1 was found. Taken together, this results demonstrate that plk1 is critical for successful mitotic division of mouse SCNT 1-cell embryos.
To have a better understanding of pluripotency, whole gene expression of embryo-derived stem cells (EdSCs) in bovine species was investigated. EdSCs were established from the embryos produced by in vitro fertilization, parthenogenesis and somatic cell nuclear transfer. Then, the microarray was performed and analyzed. Differently expressed genes (DEGs) were also confirmed by Real-time PCR. Among 10,203 DEGs, little difference was found in gene expression among three kinds of EdSCs. Conversely, all EdSCs have an immensely different gene expression when compared with somatic cells, consistent with scatter plat results. To investigate shared pathways for pluripotency in all EdSCs, 2,415 co-DEGs were identified which compared with somatic cells. By KEGG database, there were 54 signaling pathways in co-DEGs and some of them were related with pluripotency maintenance such as TGFβ, WNT and JAK-STAT signaling. In TGFβ signaling, BMP family and SMAD family were involved in co-up-regulated DEGs. In WNT signaling, WNT family and receptors were included in co-up-regulated DEGs, while inhibitors of WNT signaling were associated with co-down-regulated DEGs. In JAK-STAT signaling, STAT3 belonged to co-down-regulated DEGs. These DEGs were also confirmed by Real-time PCR. Taken together, BMP and WNT pathways may be activated and paly central roles to retain pluripotency in bovine EdSCs, whereas the LIF/STAT3 pathway may not be operated well. This study was supported by a grant from the National Research Foundation of Korea (NRF-2006-2004042, and No. 2015048003 through the Oromaxillofacial Dysfunction Research Center for the Elderly at Seoul National University) and the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture, Food and Rural Affairs (MAFRA; 111160-04), Republic of Korea.