Polarimetric measurements of the lunar surface from lunar orbit soon will be available via Wide-Field Polarimetric Camera (PolCam) onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is planned to be launched in mid 2022. To provide calibration data for the PolCam, we are conducting speckle polarimetric measurements of the nearside of the Moon from the Earth’s ground. It appears that speckle imaging of the Moon for scientific purposes has not been attempted before, and there is need for a procedure to create a “lucky image” from a number of observed speckle images. As a first step of obtaining calibration data for the PolCam from the ground, we search for the best sharpness measure for lunar surfaces. We then calculate the minimum number of speckle images and the number of images to be shift-and-added for higher resolution (sharpness) and signal-to-noise ratio.
본 논문은 동역학의 새로운 변분이론인 확장 해밀턴 이론을 열 탄성과 공극 탄성에 적용하여 더욱 일반화하는 것에 그 주 요 목적이 있다. 이를 위해 열 탄성학에 대한 이론 적용이 우선적으로 검토되었고, 열 탄성-공극 탄성의 유사성을 바탕으로 공극 탄성에까지 그 이론이 확장되었으며, 각 경우에 대한 푸리에 변환을 통해 그 적정성을 확인하였다.
동역학의 새로운 변분이론인 혼합 합성 변분이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될 수 있는 기반을 제공하는 것으로, 본 논문은 이 이론을 토대로 시간에 대한 이차의 형상함수가 적용된 시간 유한요소해석법을 개발하고 그 해석법의 수치특성 확인을 통해 향후 다양한 동적시스템 해석의 적용에 대한 가능성을 살펴보았다. 이를 위해 가장 기본적인 선형탄성의 단자유도계가 고려되었다. 에너지 보존시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), 제안된 알고리즘 모두는 time-step에 관계없이 안정적이며 수치감쇠가 없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.
동역학의 새로운 변분이론인 확장 해밀턴 이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될수 있는 기반을 제공하는 것으로 본 논문에서는 이 이론을 기반으로 선형탄성 단자유도계에 적용한 새로운 수치해석법을 제안하였다. 곧, 변분이론의 특성을 감안해, 전체 time-step에 대한 수치해를 한번에 산정하는 해석법을 제안하였고, 주요 예제를 통해 이 해석법의 특성을 살펴보았다. 에너지 보존 시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), time-step에 관계없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠 시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.