검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        다변량 지역빈도해석은 기존에 사용되어온 다변량 빈도해석과 지역빈도해석의 장점을 가지고 있는 방법으로 다양한 변수를 고려함으로써 수문현상에 대하여 많은 정보를 얻을 수 있다. 현재까지는 우리나라의 수문자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 수문자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 수문학적 동질지역을 설정하는 단계에 집중하여 이변량 수문자료인 연최대 강우량-지속기간 자료에 대하여 수문학적 동질지역을 설정하였다. 이변량 지역빈도해석에서 사용되는 지역 구분방법의 한국의 연최대 강우량-지속기간 자료에 대한 적용성을 평가하였고 그 특성을 분석하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 군집해석방법으로는 K-medoid 방법을 적용하였고, 불일치 척도와 이질성 척도를 이용하여 지역구분이 적절히 되었는지를 판정하였다. 군집해석 결과 한국은 총 5개의 지역으로 나누어지며, 두 지역을 제외하고는 지역 내 모든 지점의 불일치 척도가 기준치 이하인 것으로 나타났다. 자료연수가 짧은 지점에서 불일치 척도가 높게 나오는 것을 확인하였다. 구분된 모든 지역은 지역 내 지점들의 자료들이 동질한 것으로 나타났고 각 지점간의 상관성이 매우 높은 것으로 나타났다.
        2.
        2014.02 서비스 종료(열람 제한)
        다변량 확률모형을 통한 빈도해석 방법이 발전함에 따라 수문통계 분야에도 이에 대한 적용이 대두되고 있다. 다변량 확률모형은 확률변수의 특징을 갖는다고 판단되는 수많은 변수에 적용이 가능하며 이에 따라 수문분야에서는 가뭄, 홍수, 강우와 같은 자료에 적용되고 있다. 본 연구에서는 서울지점의 기상청 강우관측기록을 이용하여 이변량 빈도해석을 수행하였으며 확률강우량을 산정하였다. 사용된 이변량 확률모형은 archimedean copula인 Frank, Gumbel-Hougaard, Joe 등의 3가지 모형이며, IFM(Inference Function for Margin) 방법을 이용하여 매개변수를 추정하였으며, empirical copula 와 추정된 copula 모형의 차이를 이용하여 각 모형간의 확률강우량 산정결과의 차이를 비교하였다.