Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disease accompanied by aging, followed by memory impairment and cognitive decline. Although numerous attempts have been made to develop treatments for AD, most clinical trials have failed to delay or stop the progression of AD. Electroacupuncture (EA) is a complementary alternative medicine technique widely used to treat pain, inflammation, and neurodegenerative diseases. Additionally, blood-brain barrier (BBB) disruption is a known pathophysiology of neurodegenerative diseases, including AD. Moreover, amyloid beta deposition increases BBB permeability and produces inflammatory cytokines induced by glial activation. However, our previous study revealed that EA treatment at the Taegye acupoints (KI3) improves memory impairment through anti-neuroinflammation and increases glucose metabolism in 5XFAD mice. Therefore, we evaluated whether EA treatment at KI3 regulates BBB dysfunction in the prefrontal cortex of 5XFAD mice. For this study, 6.5-month-old 5XFAD mice were treated with EA stimulation at KI3 three times a week for two weeks. Western blotting, immunohistochemistry, and flow cytometry were used to evaluate the effects of EA treatment on BBB dysfunction. We found that EA stimulation attenuates BBB integrity by protecting BBB tight junction proteins (CD31, aquaporin 4, occludin, and claudin 5) in the prefrontal cortex of 5XFAD mice. In addition, EA treatment regulated inflammatory cytokines (IL-1α, IL-1β, IL-17, IL-23, IFN-ɣ, monocyte chemoattractant protein 1 (MCP-1), granulocyte-macrophage colony stimulating factors [GM-CSF], and IL-10) in the peripheral circulation of 5XFAD mice. Therefore, our data suggest that EA treatment could be a therapeutic agent for enhancing BBB dysfunction in AD.
The potential abilities of 3-methylbenzaldehyde derived from Myosotis arvensis oil and its structural analogues to actas new acaricide and mite kit (mite color deformation) against Tyrophagus putrescentiae (Schrank) were evaluated in thepresent study. Based on the LD50 values, 2,4,5-trimethylbenzaldehyde (0.78 μg/cm3) had highest vapor action against T.putrescentiae, followed by 2,4-methylbenzaldehyde (1.14 μg/cm3), 2,5-dimethylbenzaldehyde (1.29 μg/cm3), 2-methylbenzaldehyde (1.32 μg/cm3), 2,3-dimethylbenzaldehyde (1.55 μg/ cm3), 3-methylbenzaldehyde (1.97 μg/cm3), and4-methylbenzaldehyde (2.34 μg/cm3). The color deformation of seven methylbenzaldehyde analogues mixed with2,3-dihydroxybenzaldehyde against T. putrescentiae showed mite color deformation, from coloress to reddish brown, andvaluable to distinguish with the naked eye. In addition, there was no antagonistic interactions between 2,3-dihydroxybenzaldehydeand the methylbenzaldehyde analogues. These finding suggests that the methylbenzaldehyde analogues could be developedas dual functional agent to protect from fall in the commercial value of stored food products.
소듐냉각 고속로 (SFR) 핵연료 피복관 후보재료로 고려되고 있는 중형 규모의 HT9 단조품 소재에 대한 금속조직학적 영향을 고찰하였다. 시험 재료는 유도가열법을 이용하여 1.1톤 규모의 잉곳으로 성형한 후, 1170℃에서 고온 단조 및 공랭을 통하여 160mm 직경 및 7000mm 길이를 갖는 단조품으로 가공하여 반 경방향으로 미세조직의 변화를 관찰하였다. 시험 결과 시험 재료는 페라이트-마르텐사이트 조직을 보였 으며 합금 조성에 의하여 2~3%의 델타 페라이트 (delta ferrite)를 가짐과 동시에 반경방향의 냉각속도 차 이에 의하여 최대 15%의 변태 페라이트 (transformed ferrite)를 함유함이 관찰되었다. 냉각곡선의 모델 링과 시간-온도-변태 (TTT) 선도를 이용한 민감도 분석을 통하여 단조품의 직경을 120mm로 줄였을 경우 중심부의 변태 페라이트 형성을 억제할 수 있음을 제시하였다.