Knowledge of genetic diversity and of the genetic relationships among elite breeding materials has had a significant impact on the improvement of crops. In maize, this information is particularly useful in i) planning crosses for hybrid and line development, ii) in assigning lines to heterotic groups and iii) in plant variety protection. We have used the SSR technique to study the genetic diversity and genetic relationships among 76 Korean waxy corn accessions, representing a diverse collection from throughout Korea. Assessment of genetic diversity among members of this group was conducted using 30 microsatellite markers. Among these 30 microsatellite markers, we identified a total of 127 alleles (with an average of 4.2 and a range of between 2 and 9 alleles per locus). Gene diversity at these 30 microsatellite loci varied from 0.125 to 0.795 with an average of 0.507. The cluster tree generated with the described microsatellite markers recognized two major groups with 36.5% genetic similarity. Group I includes 63 inbred lines, with similarity coefficients of between 0.365 and 0.99. Group II includes 13 inbred lines, with similarity coefficients of between 0.45 and 0.85. The present study indicates that the 30 microsatellite loci chosen for this analysis are effective molecular markers for the assessment of genetic diversity and genetic relationships between Korean waxy corn accessions. Specifically, this study's assessment of genetic diversity and relationships between a set of 76 Korean waxy corn inbred lines will be helpful for such activities as planning crosses for hybrid and line development and association mapping analyses of maize breeding programs in Korea.