Buckwheat sprout is used as vegetable, and also flour for making noodles, and so on. Currently, information about tissue culture in buckwheat is limited and restricted to micropropagation. We carried out somatic embryogenesis and plant regeneration using hypocotyl segments as explant of the cultivated buckwheat species Fagopyrum esculentum, differs from existing studies in the growth regulator combinations used. Maximum callus regeneration was induced on MS medium containing 2,4-D(2.0 mg/L) and benzylaminopurine BAP (1.0 mg/L) and 3% sucrose. Friable callus was transferred to solidified MS media containing BAP (1.0 mg/L) and at various concentrations for the induction of embryogensis. The optimum concentrations of additives were IAA (2 mg/L), KIN(1.0 mg/L), BAP (1.0 mg/L), and 3% (w/v) sucrose. Only 2,4-D did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 5 % to 20%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to MS media with 3% sucrose. Regenerated plants after acclimation will transfer to green house. The main objective of this research was to develop a efficient protocol for plant regeneration for common buckwheat, and to apply in future for genetic transformation.