검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.05 구독 인증기관·개인회원 무료
        Some of the metal waste generated from KEPCO NF is being disposed of in the form of ingots. An ingot is a metal that is melted once and then poured into a mold to harden, and it is characterized by a uniform distribution of radioactive material. When measuring the uranium radioactivity in metal ingot with HPGe detector, 185.7 keV of U-235 is used typically because most gamma rays emitted at U-235 are distributed in low-energy regions below 200 keV. To analyze radioactivity concentration of U-235 with HPGe detector more accurately, self-attenuation due to geometrical differences between the calibration source and the sample must be corrected. In this study, the MCNP code was used to simulate the HPGe gamma spectroscopy system, and various processes were performed to prove the correlation with the actual values. First an metal ingottype standard source was manufactured for efficiency calibration, and the GEB coefficient was derived using Origin program. And through the comparison of actual measurements and simulations, the thickness of the detector’s dead layers were defined in all directions of Ge crystal. Additionally instead of making an metal ingot-type standard source every time, we analyzed the measurement tendency between commercially available HPGe calibration source (Marinelli beaker type) and the sample (metal ingot type), and derived the correction factor for geometry differences. Lastly the correction factor was taken into consideration when obtaining the uranium radioactivity concentration in the metal ingot with HPGe gamma spectroscopy. In conclusion, the U-235 radioactivity in metal ingot was underestimated about 25% of content due to the self-attenuation. Therefore it is reasonable to reflect this correction factor in the calculation of U-235 radioactivity concentration.
        2.
        2022.05 구독 인증기관·개인회원 무료
        High-intensity focused ultrasonic (HIFU) decontamination technology to decontaminate complex metal radioactive waste was developed and verified. Ultrasonic decontamination technology is a method widely used in this field, but its energy strength is weak, so it cannot be applied to fixed contamination. The HIFU developed in this study can eliminate a wide range of fixed contamination due to the advantage of maintaining a high frequency while having hundreds of times the energy intensity compared to conventional general ultrasonic method. In addition, there is a merit in that there is no work that generates a lot of secondary wastes such as chemical decontamination method or threatens the safety of workers. In particular, high ultrasonic energy is transmitted to curved parts and inside pipes that cannot be decontaminated with blasting method, so various types of metal wastes can be treated with the HIFU method. In this study, the performance of the HIFU was verified for zirconium chips, and the radioactivity after decontamination was reduced to less than MDA in all subjects.
        3.
        2022.05 구독 인증기관·개인회원 무료
        A method of quantitatively analyzing radioactivity of uranium waste in the In-situ measurement using Bayesian inference was proposed. When applying the traditional efficiency calibration method, which uses standard sources or Monte Carlo simulation, the radioactivity error is large depending on the degree of spread of the radioactive contamination especially in large sample such as a 200 L drum. In addition, the existing method has a limitation in that it is difficult to reflect the uncertainty according to the location of the source. In this preliminary study, to overcome the limitations of the existing method, a Bayesian statistical-based radioactivity quantitative analysis model was proposed that can increase the accuracy of analysis even in situations where radioactive contamination of uranium waste is non-uniformly distributed. As a result of evaluating the simulated waste with the proposed Bayesian method, the accuracy was improved more than about 6 times compared to the classical efficiency calibration method.