검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Estrus in cows can be detected through vaginal electrical resistance or conductivity. However, there are no studies measuring vaginal electrical resistance in Hanwoo cows. This study aims to measure the vaginal electrical resistance value in Hanwoo cows and compare it with estrus and ovulation. Methods: Vaginal electrical resistance values of 73 Hanwoo cows were measured before and after estrus at the Gyeongsangbuk-do Livestock Research Institute. Measurements were taken on days -6, -3, -2, -1, 0, 1, 2, 3, and 6 of artificial insemination. Large follicles and ovulation were confirmed using transvaginal ultrasonography. Results: The vaginal electrical resistance averaged 225.6 ± 6.3 Ω days before the artificial insemination date, decreasing until the day of artificial insemination. The average vaginal electrical resistance was 163.7 ± 4.6 Ω on the date of artificial insemination, and 188.8 ± 4.3 Ω one day after artificial insemination, when large follicles were observed. In addition, on the 6th day after artificial insemination, the vaginal electrical resistance averaged 231.4 ± 5.5, which was similar to the 6th day before artificial insemination (222.5 ± 6.3). Transvaginal ultrasonography showed that most of the cows ovulated one day after artificial insemination. Conclusions: The accuracy of estrus is high if the vaginal electrical resistance is measured for cows with confirmed estrus, making is a potentially useful for determining the timing of artificial insemination.
        4,000원
        2.
        2015.12 구독 인증기관 무료, 개인회원 유료
        Obesity is a risk factor for various diseases, including cardiovascular disease, diabetes, renal disease, hypertension, cancer, and neural disease. Adipose tissue in animals is important for the mobilization of lipids, milk production, deposition of fat in different depots, and muscle and meat production. Understanding the genetic and physiological causes of metabolic disease is a priority in biomedical genome research. In this study, we examined several variables in mice fed a high-fat diet, including serum composition, body weight, total calorie intake, and differentially expressed genes. Body weight and blood glucose levels were not significantly different between animals fed high-fat and normal diets. However, high-fat diet groups showed reduced calorie and food intakes. Levels of sodium, ionized calcium, glucose, hematocrit, hemoglobin, pH, PCO2, PO2, TCO2+, HCO3+, base excess, and SO2 in the blood were not significantly different between mice fed high-fat and normal diets. Serum potassium concentration, however, was lower in mice a high-fat diet. Differentially expressed genes were also compared between the two groups. The purpose of this study was to discover new genes as a result of annealing control primer (ACP) PCR using 20 random primers. Five down regulated genes were identified and three of others were up-regulated by high-fat diet. Known genes were excluded from this result. In addition, the relationships among candidate genes and high-fat diet should be investigated according to potassium concentration in the blood. In conclusion, mice fed normal and high-fat diets showed no significant difference in body weight, whereas high-fat diet led to changesin blood composition and differential expression of several genes. These findings may provide a better understanding of the mechanisms underlying the association between obesity and metabolic diseases.
        4,000원