A recent report demonstrated that in human aging brain after menopause/andropause luteinizing hormone (LH) is localized in the cytoplasm of pyramidal neurons of hippocampus and a significant increase of LH is also detected in the cytoplasm of pyramidal neurons and neurofibrillary tangles of Alzheimer's disease brain compared to age-matched control brain. It was suggested that the decreased steroid hormone production and the resulting LH expression in the neurons vulnerable to Alzheimer's disease pathology may have some relevance to the development of Alzheimer's disease. It is, however, unclear whether the presence of LH in neurons of human aging and Alzheimer's disease brain is due to intracellular LH expression or to LH uptake from extracellular sources, since gonadotropins are known to cross the blood brain barrier. Moreover, there is no report by using the brain of experimental animal that LH is expressed in such neurons as found in the human brain. In the present study, we found that LH immunoreactivity is localized in the pyramidal neurons of cerebral cortex and hippocampus of 12 and 18 months old rats but can not detect any immunoreactivity for LH in the young adult (3-5 months old) rats. To confirm that these LH immunoreactivity results from de novo synthesis in the brain but not the uptake from extracellular space, we performed RT-PCR and found that mRNA for LH is detected in several regions of brain including cerebral cortex and hippocampus. These findings suggest us that LH expression in old rat brain may play an important role in aging process of rat brain.
Sequence-tagged site (STS) markers tightly linked to the bacterial leaf blight (BLB) resistance genes, xa5, xa13 and Xa21, were used in this study. A survey was conducted to find polymorphisms between the resistant and susceptible germplasm in rice. 500 of Korean varieties and 100 of landraces were evaluated in this study. STS marker, RG207 was used to having xa5 resistance gene of rice germplasm. 27 varieties of Korean germplasm showed resistant for xa5 gene. The RG136 an xa-13 marker resulted in a single band of approximately 1kb in all the rice accessions studied. In order to detect polymorphism, digestion of the polymerase chain reaction (PCR) product was performed using a restriction enzyme Hinf Ⅰ. The resistant lines resulted in two bands 0.5kb on digestion with Hinf Ⅰ, while the same enzyme did not digest the PCR product of susceptible lines. No polymorphism was detected in Korean varieties and landraces, indicating that they probably do not contain xa13 gene. pTA248 an Xa-21 marker detected a band of 1kb in the resistant lines and bands of either 750bp or 700bp in the susceptible lines. Among germplasm tested, there are no varieties and landraces with Xa21 resistant gene. The results of the germplasm survey will be useful for the selection of parents in breeding programs aimed at transferring these bacterial blight resistance genes from one varietal background to another.
Genetic background and phylogenetic relationships among 20 Korean wheat cultivars were assessed using microsatellites after amplifying with 13 SSR primer pairs. Average allele number per primer pair was 3.36. Genetic similarities for every pair of cultivars ranged from 0.42 to 0.97, with 0.69 of overall average. Korean cultivars were divided into two major groups based on microsatellite DNA polymorphisms. Group I consisted of relatively old cultivars developed until 1970s, and group II contained the recent cultivars developed during 1980s and 1990s. Amongst old elite cultivars/lines, ‘Yukseung 3’, ‘Norin 12’ and ‘Norin 72’ contributed most to the genetic background of cultivars belonging to group I, and ‘Norin 4’, ‘Norin 12’, ‘Norin 43’ and ‘Norin 72’ to group II, respectively. The phylogenetic relationship of Korean wheat cultivars was in accordance with the genealogical data of each cultivar. The genetic background of each cultivar was assessed from the point of breeding and germplasm management such as variety identification and duplicated accessions for assisting in developing a system for the registration of new variety based on the molecular characterization in future.
Colored apiculus, awn, and long empty glume are indicators of wildness and are usually eliminated during rice domestication. Genetic analysis was conducted to clarify the inheritance patterns of awn, apiculus color, and long empty glume in Korean rice collection. Based on individual characterization of F2 progenies derived from crosses between parents with colorless and purple apiculus, two (3 colored: 1 colorless) or three dominant genes (9 purple: 3 red: 4 colorless) are estimated as controlling this character by simultaneous complementary action. Different inheritance systems were detected between S237 and S245 of 'Shareibyeo' which belong to the weedy type. To determine the genes responsible in awning and long empty glume characters, the inheritance of landrace varieties of rice ('Naengdo' and 'Yuna') was investigated. In the crosses of awned land race and awnless cultivar, three dominant genes are supposed to control the awning genetic system by 63 awned: 1 awnless individual. As for long empty glume, one recessive gene, g-l on the chromosome 4, was the one controlling the segregation ratio of 3 normal empty: 1 long empty glume. By analyzing the Korean rice collection, the inheritance systems of these wild characters may lead to a better understanding of rice domestication in the future.