검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2024.04 구독 인증기관·개인회원 무료
        This study presents the results of mosquito surveillance monitoring in Chungnam Province from 2017 to 2020. A total of 130,750 mosquitoes were collected, and we analyze variations of mosquito populations with emphasis on the most abundant species. We also provide the field survey data based on the different habitats in Chungnam Province.
        2.
        2024.04 구독 인증기관·개인회원 무료
        In the study, a variation of Haemaphysalis longicornis, a major vector of fever-causing conditions, was statistically analyzed to identify the spatial and climatic factors affecting the time-dependent variations of its population. The survey occurred in different habitats in South Korea. In addition, we developed a predictive model by using a probability function to find the peak occurrence time annually. As a result, the numbers of adults and nymphs were found to be related to temperature and relative humidity and their population peaked at the end of May in all habitats except deciduous forests. This study is expected to provide information on habitat types, times, and climate patterns that require attention to help control H. longicornis populations.
        3.
        2024.04 구독 인증기관·개인회원 무료
        Spodoptera frugiperda, commonly known as the fall armyworm (FAW), is a major pest across the globe due to its broad host range and distribution worldwide. We investigated the function of microRNAs (miRNAs) in the detoxification of insecticides, with a specific focus on its susceptibility to chlorantraniliprole which is widely utilized insecticide for its management. miRNAs are small non-coding RNA molecules, crucial for post-transcriptional regulation of gene expression. This study aims to elucidate the impact of these miRNAs on the expression of cytochrome P450 genes, which play a significant role in conferring insecticide resistance. We identified notable changes in the abundance of two specific miRNAs, sfr-miR-10465-5p and sfr-miR- 10476-5p through RNA sequencing, after chlorantraniliprole exposure. These miRNAs exhibited significantly high expression in the fat body tissue, while showing relatively lower expression in the head, midgut, and malpighian tubules. Further analysis suggested that these miRNAs might target specific cytochrome P450 genes, like CYP4C1 and CYP4C21, which are known to play a role in insecticide resistance development. Experimentation with miRNA mimics through microinjection revealed a notable increase in the survival rates of S. frugiperda larvae when subjected to chlorantraniliprole exposure, with a significant reduction in CYP4C1 and CYP4C21 gene expression levels. This suggests a direct connection between the miRNAs and the increased tolerance of Spodoptera larvae to the insecticide. Our research presents the complex function of miRNAs in gene expression regulation related to insecticide resistance, offering valuable insights into the molecular mechanisms of chlorantraniliprole resistance in S. frugiperda. These findings pave the way for further investigations into miRNA roles and their potential in managing pesticide resistance in agricultural pests.
        4.
        2024.04 구독 인증기관·개인회원 무료
        The fall armyworm, Spodoptera frugiperda, has developed extremely high levels of resistance to chlorantraniliprole and other classes of insecticides in the field. As microRNAs (miRNAs) play important roles in various biological processes through gene regulation. we examined the miRNA profile of S. frugiperda in response to Chlorantraniliprole, Indoxacarb and Thiamethoxam. Transcriptome analysis showed significant changes in the abundance of some miRNAs after treatment of S. frugiperda larvae with LC20 concentrations of three insecticides. A total of 197 miRNAs were systematically identified from S. frugiperda, and 16, 9, 2 miRNAs were differentially expressed after treatments of three insecticides. Importantly, three miRNAs were significantly downregulated and three were upregulated by RT-qPCR after treatment the LC50 of three insecticides with S. frugiperda larvae. Microinjection of agomirs of these six miRNAs into S. frugiperda larvae resulted in significant changes in mortality rates when exposed to three insecticides. Additionally, we also screened potential target genes for some of differentially expressed miRNAs, which may play important roles in insecticide resistance development. These findings provide valuable insights into the molecular mechanisms of insecticide resistance and underscore the potential of miRNAs as targets for the development of novel pest control strategies in S. frugiperda.
        5.
        2024.04 구독 인증기관·개인회원 무료
        A new fumigant, carbonyl sulfide (COS), has potential for use as a replacement for methyl bromide, yet its mechanism of toxicity to insects remains poorly understood. In this study, transcriptome analysis was performed on Tribolium castaneum malpighian tubules and fat bodies, which are known to play an essential role in energy storage and utilization in insect species. In total, upon exposure to COS, 3,034 and 2,973 genes were differentially expressed in the T. castaneum malpighian tubules and fat body, respectively. These differentially expressed genes comprise a significant number of detoxification-related genes, including 105 P450s, 18 glutathione S-transferases (GSTs), 82 ABC transporters, 25 UDP-glucosyltransferases and 42 carboxylesterases and mitochondrial–related genes, including 9 complex Ⅰ genes, 2 complex Ⅱ genes, 1 complex Ⅲ gene, 9 complex IV genes, 8 complex V genes from both malpighian tubules and fat body tissues. Moreover, KEGG analysis demonstrated that the upregulated genes were enriched in xenobiotic metabolism by ABC transporters and drug metabolism by other enzymes. We also investigated the role of carbonic anhydrases (CAs) in toxicity of COS using dsRNA treatment in T. castaneum. These results show that CA genes have a key role in toxicity of the COS. Furthermore, the results of transcriptomic analysis provide new insights into the insecticidal mechanism of COS fumigation against T. castaneum and eventually contribute to the management of this important stored grain pests.
        6.
        2023.10 구독 인증기관·개인회원 무료
        The ectoparasitic mite, Varroa destructor is one of the most destructive pests of the honeybee (Apis mellifera) leading to the collapse honey bee colony in many regions of the world. RNA interference (RNAi) is a novel approach recently proposed for insect pest control. However, the efficiency of RNAi in insects is low due to the lack of effective delivery methods for dsRNA and sensitivity to nuclease degradation. Therefore, the success of RNAi technology largely depends on the stability of dsRNA. To explore the possibility of using RNAi to control varroa mite, we determined the effects of dsRNA targeting a subunit of the cytoplasmic coatomer protein complex B2, D, and E subunits on target gene expression for varroa mite. We observe that dsRNA ingested by bees is transferred to the varroa mite, resulting in knockdown of COPB2 expression. Furthermore, we demonstrate that chitosan nanoparticles-dsRNA complexes were more stable for 7 days in honeybee tissue fluids. The dsRNA-conjugated with chitosan was protected from degradation in hemolymph, fat body, and midgut extracts collected from the honeybee. These results possibly suggest that nanoparticles-dsRNA complexes might be horizontally transferred from treated honeybee to varroa mite, in which case the honeybees could serve as RNAi vectors. We confirmed, moreover, dsRNA fed nontarget insects, honeybee, were unaffected, and no toxicity was observed for honeybee. Overall, these data suggest that dsRNA-conjugated with chitosan help escape effectively from degradation by honeybee tissue fluids and could improve RNAi efficiency in varroa mite.
        10.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지난 10년 동안, 이중 가닥 RNA (double-stranded RNA, dsRNA)를 이용한 특정 유전자 발현 간섭(RNA interference, RNAi) 기술은 의약품 개발뿐만 아니라 작물보호 분야에 해충방제부터 익충보호까지 다양하게 그 기술이 사용되어 왔다. 그동안 학계 및 산업체에서 활발히 연 구되어 온 RNAi기술을 이용한 작물 및 익충보호제는 상용화를 눈앞에 두고 있다. 미래 농업 시장에서 해충방제제와 익충보호제로써의 개발을 위한 RNAi의 기술적 응용은 상당한 잠재력을 가지고 있지만, 현장에 직접 사용되기에는 아직 여러 가지 한계점이나 극복해야 할 과제가 남아있 다. 본 리뷰에서는 최근에 활발히 진행되고 있는 작물보호제 및 익충보호제(protection of crops and beneficial insects)로써의 dsRNA의 다양 한 활용과 그 잠재성(potential)을 소개하고자 한다.
        4,000원
        13.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ATP-binding cassette (ABC) transporter는 다양한 기질을 세포 밖과 세포 안으로 수송하는 대표적인 수송단백질이다. 곤충에서 ABC transporter는 살충제에 대한 저항성을 발달시키는 중요한 역할을 한다. 현재까지 모델곤충인 초파리를 대상으로 ABC transporter의 살충제 교차저항성에 관한 연구는 많이 수행되어오지 않았다. 본 연구에서는 ABC transporter에 속하는 Mdr49A 유전자가 여섯 종류의 살충제에 보이는 교차저항성 기작을 형질전환 초파리를 이용하여 구명하였다. 초파리 91-R과 91-C 계통은 공통된 조상으로부터 유래되었으며 91-R은 60년 이상 DDT에 노출되었지만 91-C는 어떠한 살충제에도 노출되지 않고 유지되어 왔다. 91-R 계통의 MDR49A 단백질에서 유래된 3개의 아미노산 돌연변이를 형질전환 초파리에 과발현 시켰을 때 carbofuran에 대해서 2.0~6.7배 그리고 permethrin에 대해서 2.5~10.5배의 교차저항성을 나타 낸 반면 다른 약제, abamectin, imidacloprid, methoxychlor, prothiofos에 대해서는 어떠한 교차저항성도 나타내지 않았다. 이상의 결과는 Mdr49A 유전자의 과발현과 더불어 3개의 아미노산 돌연변이는 두 개 약제, carbofuran과 permethrin에 대해 교차저항성 기능을 한다고 제시하고 있다
        4,000원
        16.
        2018.04 구독 인증기관·개인회원 무료
        The common bed bug, Cimex lectularius, possesses a cholinesterase expressed exclusively in the salivary gland (ClSChE). In this paper, we investigated the molecular structure, tissue distribution patterns, and biochemical properties of ClSChE and showed that ClSChE exists as a soluble monomeric form or a soluble dimeric form connected by a disulfide bridge. Immunohistochemical analysis confirmed that ClSChE was expressed in the epithelial cells of both the salivary gland and the duct. In addition, the secretion of monomeric ClSChE through the proboscis during feeding was detected by western blotting using a ClSChE-specific antibody. To predict the role of ClSChE injected into the tissue of an animal host, we analyzed the extent of sequestration and hydrolysis of acetylcholine (ACh)/choline (Ch) by ClSChE by ultra-performance liquid chromatography-tandem mass spectrometry. Kinetic analysis revealed that ClSChE possesses extremely low Km (high affinity to ACh) and Vmax values. These findings suggest that ClSChE functions as a sequestering enzyme specific to ACh (not to Ch) by having a very strong affinity to ACh but an extremely long turnover time.
        17.
        2014.04 구독 인증기관·개인회원 무료
        The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is an ectoparasitic pest that feeds on humans as well as other mammals. We investigate that point mutations on the voltage-sensitive sodium channel are associated with the resistance to pyrethroids. Two point mutations (V419L and L925I) in the voltage-sensitive sodium channel (VSSC) α-subunit gene have been identified in deltamethrin-resistant bed bugs. L925I, located the intracellular loop between IIS4 and IIS5, has been previously found in a highly pyrethroid-resistant populations of whitefly. V419L, located in the IS6 transmembrane segment, is a novel mutation. To establish a population-based genotyping method as a molecular resistance monitoring tool, a quantitative sequencing (QS) protocol was developed. Frequency prediction equations were generated from the plots by linear regression, and the signal ratios were shown to highly correlate with resistance allele frequencies (r2 > 0.993). In addition to QS, the filter contact vial bioassay (FCVB) method was established and used to determine the baseline susceptibility and resistance of bed bugs to pyrethroids. A pyrethroid-resistant strain showed > 9375- and 6990-fold resistance to deltamethrin and λ-cyhalothrin, respectively. Resistance allele frequencies in different bed bug populations predicted by QS correlated well with the FCVB results, confirming the roles of the two mutations in pyrethroid resistance. Taken together, employment of QS in conjunction with FCVB method should greatly facilitate the detection and monitoring of pyrethroid resistant bed bugs in the field.
        18.
        2012.05 구독 인증기관·개인회원 무료
        We analyzed molecular and enzymatic properties of three cholinesterases (ChEs; ClAChE1, ClAChE2 and ClSChE) from Cimex lectularius. The ClAChE1 and ClAChE2 were generally present as a membrane-anchored dimeric insoluble form in the brain and ganglia. In the case of ClSChE, monomeric and dimeric soluble forms were observed. To investigate enzymatic properties, three ChEs were functionally expressed using baculovirus expression system. ClAChE1 revealed a significantly higher activity than ClAChE2 to acetylthiocholine iodide (ATChI) substrate. Kinetic analysis using two choline substrates (ATChI and butyrylthiocholine iodide) demonstrated that ClAChE2 had higher catalytic efficiency but lower substrate specificity than ClAChE1. Inhibition assay was conducted by using three inhibitors (BW284C51, eserine, Iso-OMPA) and two insecticides (chlorpyrifos-methyl and carbaryl). Two ClAChEs revealed high sensitivities to BW284C51, eserine, chlorpyrifos-methyl and carbaryl, but were not sensitive to Iso-OMPA. This inhibition profile confirmed that both ClAChEs are categorized as ChEs. Interestingly, the salivary specific cholinesterase did not show any measurable activities to choline substrates, confirming its non-synaptic function in C. lectularius
        19.
        2011.10 구독 인증기관·개인회원 무료
        We identified and characterized the full-length cDNA sequences encoding two acetylcholinesterases (ClAChE1 and ClAChE2) and a salivary gland-specific cholinesterase (ClSChE) from the common bed bug, Cimex lectularius. All three cholinesterase genes (Clac1, Clace2 and Clsce) have conserved motifs, including a catalytic triad, a choline binding site and an acyl pocket. Phylogenetic analysis showed that ClAChE1 belongs to the insect AChE1 clade, whereas ClAChE2 belongs to the insect AChE2 clade. ClSChE was grouped into the clade containing all AChE1s, suggesting its paralogous relationship to ClAChE1. Transcription levels of Clace1 were higher than those of Clace2 in all tissues examined, including the central nervous system (CNS). In contrast, the Clsce transcript was not detected in the CNS but specifically found in the salivary gland in much higher levels (>3000 fold) than those of Clace1 and Clace2. Western blot analysis using anti-ClAChE antibodies in conjunction with activity staining revealed that ClAChE1 is more active than ClAChE2 whereas ClSChE has little enzyme activity. Three-dimensional structure modeling suggested that ClAChEs and ClSChE shared structural similarities, but had some differences in the residues forming the acyl pocket and oxyanion hole. The current findings should provide valuable insights into the evolution and functional diversification of insect cholinesterase.