Colorectal cancer (CRC) poses a significant global public health challenge, accounting for 10% of newly diagnosed cancer cases and causing 9.4% of cancer-related deaths. Conventional treatment methods like surgery, chemotherapy, and radiation have shown limited success despite the increasing incidence of CRC. Thus, there is an urgent need for innovative therapeutic approaches. Researchers are continually working on developing novel technologies, notably focused on the creation of safe and effective cancer nanomedicines, in their continuous effort to advance cancer treatment. Nanoparticles exist at the nanoscale. Nanoparticles at the nanoscale have distinctive properties that leverage the metabolic disparities between cancerous and normal cells. This property allows them to selectively induce substantial cytotoxicity in cancer cells while minimizing damage to healthy tissue. Carbon nanomaterials (CNMs), including graphene oxide (GO), carbon nanotubes (CNTs), and nanodiamonds (NDs), have undergone extensive investigation due to their biocompatibility, surface-to-volume ratio, thermal conductivity, rigid structural properties, and ability for post-chemical modifications. Notably, GO has emerged as a promising two-dimensional (2D) material for cancer treatment. Several groundbreaking nanoparticle-based therapies, predominantly utilizing GO, are currently undergoing clinical trials, with some already gaining regulatory clearance.