검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,841

        101.
        2023.05 구독 인증기관·개인회원 무료
        The damage ratio of Spent Nuclear Fuel (SNF) is a very important intermediate variable for dry storage risk assessment which require an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a sensitivity analysis was performed to evaluate the importance of the damage parameters that need to be calibrated for the simulation of zircaloy-4 cladding failure using computational mechanics. The simulation model was generated from a microscopic image of the cladding with hydride. The image segmentation method was used to separate the Zircaloy-4, hydride, and hydride- Zircaloy matrix interfaces to create a pixel-based finite element model. The ring compression test (RCT) was simulated because the resistance of the cladding under pinch load can be evaluated by this test. It was assumed that the damage starts with the formation and growth of voids or small cracks in the material, which grow and combine to form larger cracks, eventually leading to the complete fracture of the material. Therefore, the ductile damage criterion was applied to all materials to simulate crack formation and propagation. The sensitivity analysis was performed based on the design of experiments using L8 orthogonal array. The effects of five factors on the fracture resistance of hydrided cladding were quantified, and they are the fracture strains describing the damage initiation in zircaloy-4 matrix, hydride, and hydride-zirconium matrix, and yield stress and Young’s modulus for hydride-zirconium matrix. Information on those parameters are hardly available in literature and experimental data which enable the estimation of those are also very rare. It is planned to build a computational model which can accurately simulate the fracture behavior of hydrided cladding by calibrating significant fracture parameters using reverse engineering. The results of this study will help to figure out those significant parameters.
        102.
        2023.05 구독 인증기관·개인회원 무료
        Considering the domestic situation where all nuclear power plants are located on seaside, the interim storage site is also likely to be located on coastal site. Maritime transportation is inevitable and the its risk assessment is very important for safety. Currently, there is no independently developed maritime transportation risk assessment code in Korea, and no research has been conducted to evaluate the release of radioactive waste due to the immersion of transport cask. Previous studies show that the release rate of radionuclides contained in a submerged transport cask is significantly affected by the area of flow path generated at the breached containment boundary. Due to the robustness of a cask, the breach is the most likely generated between the lid and body of cask. CRIEPI investigated the effect of cask containment on the release rate of radioactive contents into the ocean and proposed a procedure to calculate the release rate considering the so-called barrier effect. However, the contribution of O-ring on the release rate was not considered in the work. In this study, test and analysis is performed to determine the equivalent flow path gap considering the influence of O-rings. These results will be implemented in the computational model to assess sea water flow through a breached containment boundary using CFD techniques to assess radionuclide release rates. The evaluation of release rate due to container lid gaps has been performed by CRIEPI and BAM. In CRIEPI, the gap of the flow path was calculated from the roughness of the container surface without a quantitative assessment of the severity of the accident. In this work, to evaluate the release rate as a function of lid displacement, a small containment vessel is engineered and a metal Oring of the Helicoflex HN type is installed, which is the most commonly used one in transport and storage casks. The lid of containment vessel is displaced in vertical and horizontal direction and the release rate of the vessel was quantified using the helium leak test and the pressure drop test. Through this work, the relationship between the vertical opening displacement and horizontal sliding displacement of the cask lid and the actual flow path area created is established. This will be implemented in the CFD model for flow rate calculation from a submerged transport cask in the deep sea.