검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, it was simulated and analyzed the evacuation safety to identify the cadets’ evacuation time by using maritimeEXODUS which is applied IMO MSC.1/Circ.1238 theory as well as the trim and heel which are the major factor of reducing the ship evacuation speed. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature 60°C and resulted that there is no influence in evacuation by temperature. As a result of the analysis on visibility evacuation limit 5 m, it was found that the only one evacuation rallying point could not meet the evacuation safety. However, it derived the perfect evacuation safety under the condition of two rallying points available on wood fire. In case of Kerosene, it was satisfied the evacuation safety if the heeling was under 10°. Moreover, it could not meet the evacuation safety by evacuating through upper deck although there were two evacuation rallying points. When it was set by the lifeboat descending maximum angle-20°heel and 10°trim which was described in SOLAS regulation, it was simulated that the wood fire having two evacuation rallying points in the center of the ship satisfied the evacuation safety.
        4,000원
        2.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study experimentally investigated dicyclohexylammonium 2-cyanoacrylate (CA) as a potential comonomer for polyacrylonitrile (PAN) based carbon fiber precursors. The P(AN-CA) copolymers with different CA contents (0.19-0.78 mol% in the feed) were polymerized using solution polymerization with 2,2-azobis(isobutyronitrile) as an initiator. The chemical structure and composition of P(AN-CA) copolymers were determined by proton nuclear magnetic resonance and elemental analysis, and the copolymer composition was similar to the feeding ratio of the monomers. The effects of CA comonomer on the thermal properties of its copolymers were characterized differential scanning calorimetry (DSC) in nitrogen and air atmospheres. The DSC curves of P(AN-CA) under nitrogen atmosphere indicated that the initiation temperature for cyclization of nitrile groups was reduced to around 235℃. The heat release and the activation energy for cyclization reactions were decreased in comparison with those of PAN homopolymers. On the other hand, under air atmosphere, the P(AN-CA) with 0.78 mol% CA content showed that the initiation temperature of cyclization was significantly lowered to 160.1℃. The activation energy value showed 116 kJ/mol, that was smaller than that of the copolymers with 0.82 mol% of itaconic acids. The thermal stability of P(AN-CA), evidenced by thermogravimetric analyses in air atmosphere, was found higher than PAN homopolymer and similar to P(AN-IA) copolymers. Therefore, this study successfully demonstrated the great potential of P(AN-CA) copolymers as carbon fiber precursors, taking advantages of the temperature-lowering effects of CA comonomers and higher thermal stability of the CA copolymers for the stabilizing processes.
        4,000원