검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2015.11 구독 인증기관·개인회원 무료
        Poly(meta-phenylene isophthalamide)(m-Aramid)는 우수한 강도, 내화학성, 내열성이 우수하다는 특성을 지니고 있다. 이러한 특성을 섬유 직경이 수십에서 수백나노의 멤브레인(Membrane)을 제조할 수 있는 전기방사법을 이용하면 미세한 구멍(Pore)을 가지게 되어 수처리 분야에 사용하기 적합하다. 본 연구에서는 m-Aramid 용액을 전기방사법을 이용하여 멤브레인을 제조하였다. 여러 섬유 평균직경의 나노섬유상 멤브레인을 제조하고, 중금속 흡착능을 지닌 보혜마이트(Boehmite)를 도입하여, 섬유 평균 직경에 따른 수투과유량(Flux)와 입자제거 효율 및 중금속 흡착성능을 평가하였다.
        2.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study experimentally investigated dicyclohexylammonium 2-cyanoacrylate (CA) as a potential comonomer for polyacrylonitrile (PAN) based carbon fiber precursors. The P(AN-CA) copolymers with different CA contents (0.19-0.78 mol% in the feed) were polymerized using solution polymerization with 2,2-azobis(isobutyronitrile) as an initiator. The chemical structure and composition of P(AN-CA) copolymers were determined by proton nuclear magnetic resonance and elemental analysis, and the copolymer composition was similar to the feeding ratio of the monomers. The effects of CA comonomer on the thermal properties of its copolymers were characterized differential scanning calorimetry (DSC) in nitrogen and air atmospheres. The DSC curves of P(AN-CA) under nitrogen atmosphere indicated that the initiation temperature for cyclization of nitrile groups was reduced to around 235℃. The heat release and the activation energy for cyclization reactions were decreased in comparison with those of PAN homopolymers. On the other hand, under air atmosphere, the P(AN-CA) with 0.78 mol% CA content showed that the initiation temperature of cyclization was significantly lowered to 160.1℃. The activation energy value showed 116 kJ/mol, that was smaller than that of the copolymers with 0.82 mol% of itaconic acids. The thermal stability of P(AN-CA), evidenced by thermogravimetric analyses in air atmosphere, was found higher than PAN homopolymer and similar to P(AN-IA) copolymers. Therefore, this study successfully demonstrated the great potential of P(AN-CA) copolymers as carbon fiber precursors, taking advantages of the temperature-lowering effects of CA comonomers and higher thermal stability of the CA copolymers for the stabilizing processes.
        4,000원
        3.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For polyacrylonitrile (PAN) based carbon fiber (CF) process, we developed a lab scale wet spinning line and a continuous tailor-made stabilization system with ten columns for controlling temperature profile. PAN precursor was spun with a different spinning rate. PAN spun fibers were stabilized with a total duration of 45 to 110 min at a given temperature profile. Furthermore, a stabilization temperature profile was varied with the last column temperature from 230 to 275℃. Stabilized fibers were carbonized in nitrogen atmosphere at 1200℃ in a furnace. Morphologies of spun and CFs were observed using optical and scanning electron microscopy, respectively. Tensile properties of resulting CFs were measured. The results revealed that process conditions such as spinning rate, stabilization time, and temperature profile affect microstructure and tensile properties of CFs significantly.
        4,000원