Silver particles were synthesized from silver nitrate by homogeneous precipitation and chemical reduction methods involving the intermediate silver cyanate. The obtained silver particles were characterized by XRD, SEM, TEM, and BET. Urea which could prevent the agglomeration of the reduced silver particles was used as a homogeneous precipitator. The spherical silver particles with average particle diameter of 100 nm were obtained under the optimum reaction conditions. The optimum synthetic conditions were found as follows: reaction temperature , reaction time 60 min, concentration of silver nitrate mol, urea mol, and sodium citrate mol. The phase of obtained silver particles was crystalline state and the silver particles were relatively dense, which had the surface area of .
In the present study, silver-doped antibacterial hydroxyapatites were successfully prepared by the sol-gel method. For the starting solution, the molar ratio of was set to 0.075:0.045:20:0.135; was added to a ratio of Ag to total cation concentration of . The prepared sol was dried at for 48h and heat-treated at for 2h to obtain particles in the 200-500nm size range. The product from the synthesis of silver-doped hydroxyapatite was investigated through X-ray diffraction experiments and scanning electron microscopy. The product showed high antibacterial properties, with a disinfection ratio of Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 25922) over as calculated from an antimicrobial effects evaluation by the shake flask method.
Boehmite (AlOOH) powder with uniform pore size and high specific surface area were synthesized via sol-gel method using metal salts, and . During these synthetic process, the effects of the aging time were investigated to determine the optimal synthetic conditions of boehmite. X-ray diffraction, BET, Raman/IR, and scanning electron microscopy techniques were used for the characterization of the powder. Boehmite gel synthesized at the first stage of the experimental procedure transformed to crystalline boehmite phase after aging for 6 hours. The specific surface area of the crystalline boehmite showed a maximum value, , at aging time of 72 hours. The pore size of the boehmite increased with increasing aging time and the boehmite with average pore diameter of 3.6 nm was obtained at aging time of 96 hours