We map 6 massive young stellar objects (YSOs) in the CO J=2–1 line and survey 18 massive YSOs, including the six, in the HCO+ J=1−0, SiO J=2−1, H2O 616 − 523 maser, and CH3OH 70 − 61 A+ maser lines. We detect CO bipolar outflows in all the six mapped sources. Four of them are newly discovered (07299−1651, 21306+5540, 22308+5812, 23133+6050), while 05490+2658 is mapped in the CO J=2–1 line for the first time. The detected outflows are much more massive and energetic than outflows from low-mass YSOs with masses >20 M⊙ and momenta >300 M⊙ km s−1. They have mass outflow rates (3−6)×10−4 M⊙ yr−1, which are at least one order of magnitude greater than those observed in low-mass YSOs. We detect HCO+ and SiO line emission in 18 (100%) and 4 (22%) sources, respectively. The HCO+ spectra show high-velocity wings in 11 (61%) sources. We detect H2O maser emission in 13 (72%) sources and 44 GHz CH3OH maser emission in 8 (44%) sources. Of the detected sources, 5 H2O and 6 CH3OH maser sources are new discoveries. 20081+3122 shows high-velocity (>30 km s−1) H2O maser lines. We find good correlations of the bolometric luminosity of the central (proto)star with the mechanical force, mechanical luminosity, and mass outflow rate of molecular outflow in the bolometric luminosity range of 10−1−106 L⊙, and identified 3 intermediate- or high-mass counterparts of Class O objects.
We carry out 100-GHz band test observations with the newly-constructed KVN 21-m radio telescopes in order to evaluate their performance. The three telescopes have similar performance parameters. The pointing accuracies are about 4" rms for the entire sky. The main beam sizes are about 30" (FWHMs), which is nearly the diffraction limit of the telescopes at the observing frequency (97 GHz). The measured aperture and main-beam efficiencies are about 52% and 46%, respectively, for all three telescopes. The estimated moon efficiency is ~84% for the KVN Tamna telescope. The first sidelobes appear 50" (~1.6 xFWHM) from the main beam centers and the levels are on average -14 dB.