검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dualfrequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the non-KVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.
        4,000원
        2.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have initiated a Very Long Baseline Interferometer (VLBI) monitoring project of 36 methanol maser sources at 6.7 GHz using the Japanese VLBI Network (JVN) and East-Asian VLBI Network (EAVN), starting in August 2010. The purpose of this project is to systematically reveal 3-dimensional (3-D) kine- matics of rotating disks around forming high-mass protostars. As an initial result, we present proper mo- tion detections for two methanol maser sources showing an elliptical spatial morphology, G 002.53+00.19 and G 006.79-00.25, which could be the best candidates associated with the disk. The detected proper motions indicate a simple rotation in G 002.53+00.19 and rotation with expansion in G 006.79-00.25, respectively, on the basis of disk model fits with rotating and expanding components. The expanding motions might be caused by the magnetic-centrifugal wind on the disk.
        3,000원
        3.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the rst international VLBI array dedicated to high-frequency (23 GHz (K-band) and 43 GHz (Q-band)) observations in East Asia. To evaluate the imagine capability of KaVA, we performed imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M87 by KaVA at K-/Q-band. Our KaVA images reveal extended out ows with complex substructure such as knots and limb brightening, in agreement with previous observations by other VLBI facilities. Angular resolutions are better than 1.4 and 0.8 milliarcsecond (max) at K-/Q-band, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN out ows, at least comparable to the best existing radio interferometric arrays.
        3,000원
        4.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        KaVA (KVN and VERA Array) is a new combined VLBI array composed of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). Here, we report the following two issues. (1) We review the initial results of imaging observations of M87 at 23 GHz following Niinuma et al. (2014). The KaVA images reveal extended out ows including complex substructures such as knots and limb-brightening, in agreement with previous VLBI observations. KaVA achieves a high dynamic range of ~1000, more than three times better than that achieved by VERA alone. (2) Based on subsequent observations and discussions led by the KaVA AGN SubWorking Group, we set monitoring observations of Sgr A* and M87 as our Key Science Project (hereafter KSP) because of the closeness and largeness of their central super-massive black holes. The main science goals of the KSP are (i) testing the magnetically- driven-jet paradigm by mapping velocity fields of the M87 jet, and (ii) obtaining tight constraints on physical properties of the radio emitting region in Sgr A*. Towards KSP, we show the first preliminary images of M87 at 23 GHz and Sgr A* at 43 GHz with the bandwidth of 256 MHz.
        3,000원