검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        2.
        1994.12 구독 인증기관·개인회원 무료
        3.
        1992.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent spectroscopic observations indicate concentration of dark masses in the nuclei of nearby galaxies. This has been usually interpreted as the presence of massive black holes in these nuclei. Alternative explanations such as the dark cluster composed of low mass stars (brown dwarfs) or dark stellar remnants are possible provided that these systems can be stably maintained for the age of galaxies. For the case of low mass star cluster, mass of individual stars can grow to that of conventional stars in collision time scale. The requirement of collision time scale being shorter than the Hubble time gives the minimum cluster size. For typical conditions of M31 or M32, the half-mass radii of dark clusters can be as small as 0.1 arcsecond. For the case of clusters composed of stellar remnants, core-collapse and post-collapse expansion are required to take place in longer than Hubble time. Simple estimates reveal that the size of these clusters also can be small enough that no contradiction with observational data exists for the clusters made of white dwarfs or neutron stars. We then considered the possible outcomes of interactions between the black hole and the surrounding stellar system. Under typical conditions of M31 or M32, tidal disruption will occur every 103 103 to 104 104 years. We present a simple scenario for the evolution of stellar debris based on basic principles. While the accretion of stellar material could produce large amount of radiation so that the mass-to-light ratio can become too small compared to observational values it is too early to rule out the black hole model because the black hole can consume most of the stellar debris in time scale much shorter than mean time between two successive tidal disruptions. Finally we outline recent effort to simulate the process of tidal disruption and subsequent evolution of the stellar debris numerically using Smoothed Particle Hydrodynamics technique.
        4,000원
        4.
        1992.12 구독 인증기관·개인회원 무료
        7.
        1990.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink (1985), we find that such reduction from observed values would make the tidal density (the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.
        4,000원
        8.
        1990.12 구독 인증기관·개인회원 무료
        11.
        1979.12 구독 인증기관·개인회원 무료