Fibrous chitosan membranes were fabricated as a substrate for skin applications using an electro-spinning process with different solvents and varying concentrations. Scanning electron microscopy (SEM) images confirmed that the formation of the chitosan fibrous membrane in trifluoroacetic acid was better than that in acetic acid. Fourier transform infrared spectroscopy showed that the chitosan fibers were cross-linked with glutaraldehyde, and that the cytotoxicity of the aldehyde groups was reduced by glycine and washing by NaOH and DI water. Chitosan cross-linked fibrous membranes were insoluble in water and could be washed thoroughly to wash away glycine and excess NaOH and prevent the infiltration of other water soluble bio-toxic agents using DI water. MTT assay method was employed to test the cytotoxicity of chitosan membranes during fabricating, treating and washing processes. After the dehydration of cell cultured chitosan membranes, cell attachment behavior on the material was evaluated using SEM method. Effect of the treatment processes on the biocompatibility of the chitosan membranes was shown by comparing of filopodium and lamellipodium of fibroblast cells on grown washed and unwashed chitosan fibrous membrane. The MTT assay and SEM morphology confirmed that the washed chitosan fibrous membrane increased cell attachment and cell growth, and decreased toxicity compared to results for the unwashed chitosan fibrous membrane.
The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly (ε-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 μm. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.
A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from 80 μm to 1000 μm, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the 10 μm to 20 μm rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.
Using a polyurethane foam replica method, porous hydroxyapatite scaffolds (PHS) were fabricated using conventional and microwave sintering techniques. The microstructure and material properties of the PHS, such as pore size, grain size, relative density and compressive strength, were investigated at different sintering temperatures and holding times to determine the optimal sintering conditions. There were interconnected pores whose sizes ranged between about 300 μm and 700 μm. At a conventional sintering temperature of 1100˚C, the scaffold had a porous microstructure, which became denser and saw the occurrence of grain growth when the temperature was increased up to 1300˚C. In the case of microwave sintering, even at low sintering temperature and short holding time the microstructure was much denser and had smaller grains. As the holding time of the microwave sintering was increased, higher densification was observed and also the relative density and compressive strength increased. The compressive strength values of PHS were 2.3MPa and 1.8MPa when conventional and microwave sintering was applied at 1300˚C, respectively.