Recently, a new long span composite rahmen bridge has been developed to complement the short span concrete rahmen bridges. In this study, a static bending test was carried out for steel composite rahmen bridges developed for the purpose of decreasing negative moment at the end of steel girder and positive moment at the center of steel girder by introducing a horizontal prestress to the upper flange of the steel girder end. From this, the reinforcement effect of the introduction to the horizontal prestress was verified and the structural safety for the steel composite rahmen bridges was evaluated. As a result, the maximum tensile strain and the maximum compressive strain of the DL specimen at 800 kN were 16% and 12% smaller than those of the CR specimen, respectively. From this, the DL specimen decreased compressive strain due to the tensile strain of the upper flange caused by introducing the horizontal prestress at the end of the steel girder, and the tensile strain of the lower flange also decreased.
Effects of Cu and B on effective grain size and low-temperature toughness of thermo-mechanically processed high-strength bainitic steels were investigated in this study. The microstructure of the steel specimens was analyzed using optical, scanning, and transmission electron microscopy; their effective grain size was also characterized by electron back-scattered diffraction. To evaluate the strength and low-temperature toughness, tensile and Charpy impact tests were carried out. The specimens were composed of various low-temperature transformation products such as granular bainite (GB), degenerated upper bainite (DUB), lower bainite (LB), and lath marteniste (LM), dependent on the addition of Cu and B. The addition of Cu slightly increased the yield and tensile strength, but substantially deteriorated the low-temperature toughness because of the higher volume fraction of DUB with a large effective grain size. The specimen containing both Cu and B had the highest strength, but showed worse low-temperature toughness of higher ductile-brittle transition temperature (DBTT) and lower absorbed energy because it mostly consisted of LB and LM. In the B-added specimen, on the other hand, it was possible to obtain the best combination of high strength and good low-temperature toughness by decreasing the overall effective grain size via the appropriate formation of different low-temperature transformation products containing GB, DUB, and LB/LM.
아산만 해역으로 방류수가 배출될 경우, 생태-유체역학모델을 이용하여 아산만 해역의 장기 수질변화를 예측하였다. 생태-유체역학 모델은 해수유동 시뮬레이션을 위한 다층모델과 수질시뮬레이션을 위한 생태계모델로 구성되어 있다. 생태-유체역학모델을 이용하여 아산만해역의 장기 수질을 예측한 결과, 5개 정점에서 화학적산소요구량, 용존무기질소 및 용존무기인의 농도분포는 현재 계산결과에서 6개월 동안 증가하였다. 수치실험 수행시간 1년에서 2년 사이에서는 화학적 산소요구랑, 용존무기질소, 용존무기인의 농도분포는 6개월 동안 증가한 농도분포가 차츰 감소하는 경향을 보였으며, 3년에서 10년 사이에서는 일정한 농도분포를 보였다. 화학적 산소요구량, 용존무기질소 및 용존무기인의 농도는 11~67%, 10~67% 및 0.57%의 범위로 증가하였다. 10년 동안의 수치 실험 결과 화학적산소요구량과 용존무기질소의 변화 폭이 크게 나타났으며 이는 하수처리장의 방류수 중 이 두 오염부하량이 많은 양을 차지하고 있기 때문이다. 아산만 연안해역에서 화학적산소요구량, 총질소, 총인의 농도는 해역수질환경기준 II등급으로 조사되었으나, 하수처리장의 방류수가 배출될 경우 사업지구 인근의 아산만 방조제 부근에서는 해역수질환경기준 III등급으로 나타났다.
우리나라는 그동안 사회기반시설로서 도로역할을 중시하여 도로부문에 매년 대규모 예산을 투입했다. 그 결과 개발이 용이한 평탄지를 중심으로 한 국가 기간 도로망 체계 확보에 결실이 있었다. 그러나 앞으로 지속적인 도로망 체계를 건설하기 위해서는 산악지형과 같은 고비용이 들어가는 지형에 대해서 효율적으로 개발해야 하는 과제를 안고 있다. 이러한 지형은 도로 설계속도 결정단계에서 고려되어야 할 중요한 입력변수이다. 그럼에도 불구하고 현재 도로설계기준상에는 지형구분을 위한 명확하고 객관적인 판단기준이 제시되어 있지 않기 때문에 설계속도가 부정확하게 결정될 수도 있다. 본 연구는 지형구분의 필요성에 대해 인지하고 고도 및 경사 그리고 주행속도 자료를 바탕으로 합리적으로 지형구분을 하였으며, 연구결과는 다음과 같다. 첫째, 본 연구에서는 GIS data를 이용하여 고도와 경사도에 따라 지형을 9가지 AREA로 분류하였으며, 지형분류 data(AREA)와 주행속도 자료를 matching하여 분석한 결과, AREA의 분류에 따른 특성이 주행속도에 영향을 미치는 것으로 나타났다. 둘째, 본 연구에서는 고도와 경사도에 따른 지형분류와 지형분류에 따른 그룹 간 주행속도의 유의성 분석 결과를 근거로 해서 평지, 구릉지, 산지로 우리나라 지형을 구분하였다. 본 연구는 일반국도를 대상으로 한 주행 속도자료를 이용하였기 때문에 지방도나 군도등 기능이 다른 도로에 대해서는 적용상의 한계가 있으나, 향후 도로건설시 도로가 통과하는 지역의 지형적 특성을 반영 할 수 있는 하나의 기준이 될 것으로 기대된다.
본 연구에서는 대직경 고장력볼트 이음부의 안전성 및 경제성을 검토할 목적으로 F10T-M30 대직경 고장력볼트를 사용한 시험편을 대상으로 정적 인장시험을 실시하여 미끄러짐 특성을 평가하였다. 또한 유한요소해석을 실시하고 볼트의 강도등급 및 직경에 따른 소요볼트 개수를 산정하였다. 그 결과 M30 고장력볼트의 평균 미끄러짐 계수는 도로교설계기준의 기준인 0.4를 초과하며, M22 고장력볼트와 동등한 미끄러짐 성능을 확보하는 것으로 나타났다. 또한 고장력볼트의 강도등급 및 직경에 따른 경제성 분석을 실시한 결과, F10T-M22 고장력볼트를 기준으로 하여 F13T-M22 고장력볼트를 적용하면 소요볼트 개수가 21% 감소하며, F10T-M30 고장력볼트를 적용하면 46% 감소하는 것으로 나타나 고장력볼트의 대직경화에 따른 경제성을 확인할 수 있었다.