La1-xBaxMnO3 (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature TC ~ 342 K. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near TC. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/ kgK under a magnetic field change of 2.5T for the La0.6Ba0.4MnO3 composition. The relative cooling power (RCP) is 79.31 J/ kg for the same applied magnetic field.
The effect of precursor concentration on the structural, morphological, and optical properties of TiO2nano-flowers was investigated in this study. An increase in crystallite size was observed with an increase in the concentration of the precursor (titanium butoxide). The FE-SEM micrographs of the as-prepared samples show a three-dimensional flower-like morphology. The flowers consist of several nanorods coming out of a single core and have very sharp edges. Also, the variation in the aspect ratio of the nanostructure was observed with the concentration of the precursor. The photocatalytic properties of the samples show that the sample that has a high aspect ratio (AR~9) has a much better photocatalytic activity compared to the nano-crystal with a low aspect ratio (AR~6.1). It is believed that the excellent photocatalytic performance and short time synthesis of TiO2nano-flowers using the microwave hydrothermal method can have potential applications in the field of photocatalysis.