such as small plant size, small genome, short life cycle, self-fertility, and etc. Moreover, Brachypodium standard line Bd21 had already been sequenced and the data of which now have been available to the public. The development of next-generation sequencing technologies has allowed the discovery of large numbers of genome-wide DNA polymorphisms. Brachypodium standard line Bd21 was exposed to chronic gamma radiation. M2 1376-1 line was less stained with phloroglucinol compared to wild-type, which indicated reduced lingin content. Also, it’s filial generations showed dwarf phenotype. Genomic DNA was extracted from the M3 plant and was used to construct a whole-genome re-sequencing library for using Illumina HiSeq2500. The trimmed reads were aligned to the Brachypodium reference genome sequence (http:// www.phytozome.net). SICKLE, BWA, and Picard were used for accurate variant detection. More than 110 M reads were generated and 96.53% of them were mapped. This represents ~35 fold coverage. As a result, mutant specific SNVs, Insert/Deletions, and non-synonymous mutations were obtained. Moreover, non-synonymous mutations were identified from 5 lignin biosynthesis genes (Bradi1g31320, Bradi3g52350, Bradi5g21550, Bradi3g22980, Bradi5g14720). The obtained results will be incorporated in development of biofuel crops.