검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work concentrates on the design and implementation of aptamer-based electrochemical biosensors using a layer-by-layer approach for precise tracking of mucin-1 (MUC1), an important biomarker linked to breast cancer. The electrochemical biosensor was created by modifying a screen-printed carbon electrode (SPCE) with V2C MXene booster and gold nanoparticles (Au-NPs), along with Cd2+ integrated aptamer (AP) (SPCE/V2C-MXene/Au NPs/Cd2+-AP). This biosensor demonstrated high specificity and affinity for MUC1, establishing a sensitive quantification mechanism. The MXene nanolayer was produced and analyzed via TEM, XPS, SEM, AFM, BET, and MAP techniques. It served as a supportive material that enhanced electrochemical conductivity and allowed for the integration of the aptamer (AP) as the biological recognition component. The biosensor was constructed by immobilizing MUC1-specific aptamers onto the surfaces of SPCE/V2C-MXene/Au NPs, enabling selective recognition and binding with MUC1. The recorded signal, corresponding to Cd2+ integrated with AP at SPCE/V2C-MXene/Au NPs/Cd2+-AP, enabled quantitative assessment of MUC1 levels. The findings showed a linear concentration span of 1.0–500 pg/mL for detecting MUC1, achieving a detection limit of 3.45 fg/mL utilizing the SPCE/ V2C-MXene/Au NPs/Cd2+-AP biosensor. The SPCE/V2C-MXene/Au NPs/Cd2+-AP biosensor exhibited a good affinity for the detection of MUC1 in the presence of other breast cancer biomarkers, confirming its selectivity.
        4,000원
        2.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current research, a manganese and cobalt oxides-based nanocatalyst was developed which was used to make an efficient cathode electrode for fuel cells. The nano MnOx/ MnCo2O4 was synthesized through a hydrothermal procedure followed by sintering at 500–600 °C. X-ray diffraction and scanning electron microscopy besides electrochemical techniques were applied for the characterization of the synthesized nanocatalyst. The carbon black type Vulcan (XC-72R) and PTFE were used to prepare the active reaction material of the cathode electrode named carbon paste (CP). Loading of the synthesized nano MnOx/ MnCo2O4 on CP was optimized in a weight ratio of 10–90% for the oxygen reduction process in neutral conditions. The best performance was gained for the 50 W% MnOx/ MnCo2O4 loaded CP, whose active surface area was twice the bare CP. The values of the exchange current density of the ORR obtained by electrode containing 50 W% MnOx/ MnCo2O4 was calculated as 0.12 mA/cm2. The low price, good catalytic efficiency, and cyclic stability of the MnOx/ MnCo2O4 nanocatalyst compared to the commercial platinum-based catalysts confirm its ability to develop fuel cell electrodes.
        4,000원