Microalgae, such as Chlorella vulgaris and Scenedesmus obliquus, are highly efficient at capturing carbon dioxide through photosynthesis, converting it into valuable biomass. This biomass can be further processed into carbon materials with applications in various fields, including water treatment. The reinforcement learning (RL) method was used to dynamically optimize environmental conditions for microalgae growth, improving the efficiency of biodiesel production. The contributions of this study include demonstrating the effectiveness of RL in optimizing biological systems, highlighting the potential of microalgae-derived materials in various industrial applications, and showcasing the integration of renewable energy technologies to enhance sustainability. The study demonstrated that Chlorella vulgaris and Scenedesmus obliquus, cultivated under controlled conditions, significantly improved absorption rates by 50% and 80%, respectively, showcasing their potential in residential heating systems. Post-cultivation, the extracted lipids were effectively utilized for biodiesel production. The RL models achieved high predictive accuracy, with R2 values of 0.98 for temperature and 0.95 for oxygen levels, confirming their effectiveness in system regulation. The development of activated carbon from microalgae biomass also highlighted its utility in removing heavy metals and dyes from water, proving its efficacy and stability, thus enhancing the sustainability of environmental management. This study underscores the successful integration of advanced machine learning with biological processes to optimize microalgae cultivation and develop practical byproducts for ecological applications.
Optimizing business strategies for energy through machine learning involves using predictive analytics for accurate energy demand and price forecasting, enhancing operational efficiency through resource optimization and predictive maintenance, and optimizing renewable energy integration into the energy grid. This approach maximizes production, reduces costs, and ensures stability in energy supply. The novelty of integrating deep reinforcement learning (DRL) in energy management lies in its ability to adapt and optimize operational strategies in real-time, autonomously leveraging advanced machine learning techniques to handle dynamic and complex energy environments. The study’s outcomes demonstrate the effectiveness of DRL in optimizing energy management strategies. Statistical validity tests revealed shallow error values [MAE: 1.056 × 10(− 13) and RMSE: 1.253 × 10(− 13)], indicating strong predictive accuracy and model robustness. Sensitivity analysis showed that heating and cooling energy consumption variations significantly impact total energy consumption, with predicted changes ranging from 734.66 to 835.46 units. Monte Carlo simulations revealed a mean total energy consumption of 850 units with a standard deviation of 50 units, underscoring the model’s robustness under various stochastic scenarios. Another significant result of the economic impact analysis was the comparison of different operational strategies. The analysis indicated that scenario 1 (high operational costs) and scenario 2 (lower operational costs) both resulted in profits of $70,000, despite differences in operational costs and revenues. However, scenario 3 (optimized strategy) demonstrated superior financial performance with a profit of $78,500. This highlights the importance of strategic operational improvements and suggests that efficiency optimization can significantly enhance profitability. In addition, the DRL-enhanced strategies showed a marked improvement in forecasting and managing demand fluctuations, leading to better resource allocation and reduced energy wastage. Integrating DRL improves operational efficiency and supports long-term financial viability, positioning energy systems for a more sustainable future.