검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing makes it possible to improve the mechanical properties of alloys through segregation engineering of specific alloying elements into the dislocation cell structure. In this study, we investigated the mechanical and microstructural characteristics of CoNi-based medium-entropy alloys (MEAs), including the refractory alloying element Mo with a large atomic radius, manufactured via laser-powder bed fusion (L-PBF). In an analysis of the printability depending on the processing parameters, we achieved a high compressive yield strength up to 653 MPa in L-PBF for (CoNi)85Mo15 MEAs. However, severe residual stress remained at high-angle grain boundaries, and a brittle μ phase was precipitated at Mo-segregated dislocation cells. These resulted in hot-cracking behaviors in (CoNi)85Mo15 MEAs during L-PBF. These findings highlight the need for further research to adjust the Mo content and processing techniques to mitigate cracking behaviors in L-PBF-manufactured (CoNi)85Mo15 MEAs.
        4,000원
        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to develop a timely fall detection system aimed at improving elderly care, reducing injury risks, and promoting greater independence among older adults. Falls are a leading cause of severe complications, long-term disabilities, and even mortality in the aging population, making their detection and prevention a crucial area of public health focus. This research introduces an innovative fall detection approach by leveraging Mediapipe, a state-of-the-art computer vision tool designed for human posture tracking. By analyzing the velocity of keypoints derived from human movement data, the system is able to detect abrupt changes in motion patterns, which are indicative of potential falls. To enhance the accuracy and robustness of fall detection, this system integrates an LSTM (Long Short-Term Memory) model specifically optimized for time-series data analysis. LSTM's ability to capture critical temporal shifts in movement patterns ensures the system's reliability in distinguishing falls from other types of motion. The combination of Mediapipe and LSTM provides a highly accurate and robust monitoring system with a significantly reduced false-positive rate, making it suitable for real-world elderly care environments. Experimental results demonstrated the efficacy of the proposed system, achieving an F1 score of 0.934, with a precision of 0.935 and a recall of 0.932. These findings highlight the system's capability to handle complex motion data effectively while maintaining high accuracy and reliability. The proposed method represents a technological advancement in fall detection systems, with promising potential for implementation in elderly monitoring systems. By improving safety and quality of life for older adults, this research contributes meaningfully to advancements in elderly care technology.
        4,000원
        3.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.
        4,000원
        4.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bamboo forests are fast-growing, renewable resources, and their carbon sequestration potential has attracted increasing attention. Although bamboo can be used for many purposes, bamboo forests in Korea represent a generally underutilized resource. The main objective here was to perform an assessment of the physical and mechanical characteristics of different species of bamboo found in Korea. The main species of domestic bamboo are Phyllostachys bambusoides, P. pubescens, and P. nigra; we measured the air-dried density for each of the species, with obtained values of 0.89 g/cm2, 0.79 g/cm2, and 0.83 g/cm2, respectively, giving the density order of P. bambusoides > P. pubescens > P. nigra, with P. bambusoides having the highest density. We then measured the compressive strength of each species, which were 802.84 kgf/cm2, 624.69 kgf/cm2, and 743.77 kgf/cm2, respectively, in the order of P. bambusoides > P. pubescens > P. nigra, with P. bambusoides having the highest compressive strength. Volume and maximum load decreased with increasing node height in the three bamboo species, whereas air-dried density and compressive strength increased. Our results thus add to the pool of essential knowledge about Korean bamboo species, and consequently to the development of a potentially valuable domestic resource in Korea.
        4,000원