Carbon is a part of all living creatures and it is the chief constructing block for life on this planet carbon occurs in several appearances, mainly as plant biomass, organic matter in soil, as gas CO2 in the air and dissipated in seawater. Soil carbon exhausts when production of carbon increases than carbon contribution. Soil comprises nearly 75% of total carbon existing on land, more than the quantity stockpiled in living animals and plants. So, soil plays a major part in maintaining a stable carbon cycle. Over the previous 150-year-period, the quantity of carbon present in the air has amplified by 30%. Majority of scientists thought that there is a straight relationship amongst amplified levels of CO2 in the air and increasing global warming. One anticipated technique to diminish atmospheric CO2 is to escalate the global packing of carbon in soils. Therefore, there is a necessity to manage soils because soil comprises more inorganic carbon as compared to the atmosphere and more organic carbon as compared to the biosphere. Soil is also thought to be a lively and important constituent in global carbon discharge and potential of sequestration. Carbon sequestration, known commonly as C-storage, can be acquired by different controlling practices, and the size of various management techniques, to enhance C-storage of soil and offer a key basin for atmospheric CO2, can be assessed most persuasively from studies conducted over long time that underwrite exclusive data on soil C accumulation, losses and storage. Sequestration happens when input of carbon enhances as compared to output of carbon. Soil carbon sequestration is the method of relocating CO2 from the air in to the soil with crop leftover and additional organic solids and in a configuration that is not instantly emitted back to the atmosphere. This review focused on beneficial role of carbon sequestrating fertilizers (press mud, boiler ash and compost) in carbon sequestration and soil properties.