검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Matrix metalloproteinases (MMPs) have been implicated in tissue development and re-modeling. Dynamic morphological changes of tooth germs reflect involvement of these enzymes during odontogenesis. The present study was performed to investigate expression and localization of MMP-2 and MMP-9, which have been known to have type IV collagenase activities, in rat tooth germs at different developmental stages. MMP-2 expression was increased gradually in the tooth germs from cap to crown staged germs at both transcription and translation levels. The localization of this molecule was detected in secretory ameloblasts and preameloblasts. The strong immunoreactivities were occasionally seen along the basement membrane between ameloblasts (or preameloblasts) and odontoblasts (preodontoblasts). However, weak reactivity was detected in odontoblasts and reduced enamel epithelium. The level of MMP-9 expression in the tooth germs was higher in cap stage than in crown staged germs at both transcription and translation levels. They were strongly expressed in both ameloblasts and odontoblasts. Even though reduced enamel epithelium after enamel formation and inner enamel epithelium at the cap stage exhibited weak reactivity, strong reactivity was detected in dental follicles and perifollicular tissues surrounding cap staged germs. These results suggested that MMP-2 may involve degradation of the basement membrane during hard tissue formation, whereas MMP-9 might be involved in remodeling of follicular tissues.
        4,000원
        2.
        2011.03 구독 인증기관 무료, 개인회원 유료
        Teeth develop via a reciprocal induction between the ectomesenchyme originating from the neural crest and the ectodermal epithelium. During complete formation of the tooth morphology and structure, many cells proliferate, differentiate, and can be replaced with other structures. Apoptosis is a type of genetically-controlled cell death and a biological process arising at the cellular level during development. To determine if apoptosis is an effective mechanism for eliminating cells during tooth development, this process was examined in the rat mandible including the developing molar teeth using the transferase-mediated dUTP-biotin nick labeling (TUNEL) method. The tooth germ of the mandibular first molar in the postnatal rat showed a variety of morphological appearances from the bell stage to the crown stage. Strong TUNEL-positive reactivity was observed in the ameloblasts and cells of the stellate reticulum. Odontoblasts near the prospective cusp area also showed a TUNEL positive reaction and several cells in the dental papilla, which are the forming pulp, were also stained intensively in this assay. Our results thus show that apoptosis may take place not only in epithelial-derived dental organs but also in the mesenchyme-derived dental papilla. Hence, apoptosis may be an essential biological process in tooth development.
        4,000원