검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2001.12 KCI 등재 서비스 종료(열람 제한)
        Combining ability study was carried out on the components of synchronization in maturity and determinate growth habit in mungbean, using 6~times 6 diallel cross. Both additive and non-additive gene effects were found conditioning the inheritance of days to first flower, days between first pod and 90% pod maturity (DDd1), plant height from first pod stage to 90% pod maturity (DDhl, DDh2, and DDh3). Only non-additive gene action was important in degree of determination from first pod stage to 90% pod maturity (DDd2). While only additive action was important in plant height at first flower. The predominant additive gene action was observed in all traits but non-additive was significant in only DDd2 . For synchronization in maturity, determinate growth habit, and their components, the best combiners were NM92, VCl560D, and NM89, whereas the best indeterminate combinations were NM92 ~times NM89, NM92 ~times VCl560D, and NM92 ~times ML-5.
        2.
        2001.12 KCI 등재 서비스 종료(열람 제한)
        Combining ability in mungbean was studied in 15 quantitative traits through a 6 ~times 6 diallel cross. Both additive and non-additive gene effects were found conditioning the inheritane of nodes of the first peduncle, clusters per plant, clusters on main stem and branches, pods per plant, 1000 seed weight, grain yield per plant, biomass, and harvest index. The additive gene action was found significant for nodes on main stem, average internodal length, branches per plant, pods per cluster, pod length, and seeds per pod. The predominace of additive genetic variance was observed in all traits. For grain yield and yield components, the best combiner were VC3902A, VC1560D and ML-5, while the best combinations were the crosses VC3902A ~times ML-5, VC1560D ~times ML-5, and NM 92 ~times VC1560D
        3.
        2001.09 KCI 등재 서비스 종료(열람 제한)
        Two different types of molecular markers, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP), were used to measure genetic diversity among five Korean, eight Thai, and three wild soybeans. For SSR analysis, a total of 20 markers were surveyed to detect polymorphisms. For SNP analysis, four primers were designed from consensus sequence regions on disease resistance protein homolog genes, and used to amplify the genomic region. The PCR products were sequenced. A number of polymorphic SSR and SNP bands were scored on all genotypes and their genetic similarity was measured. Clustering analysis was performed independently on both types of markers. Clustering based on SSR markers separated the genotypes into three main groups originated from Korea, Thailand, and wild soybeans. On the other hand, two main groups were classified using SNP analysis. It seemed that SSR was more informative than SNP in this study. This may be due to the fact that SNP was surveyed on the smaller genomic region than SSR. Grouping based on the combined data of both markers revealed similar results to that of SNP rather than that of SSR. This might be due to the fact that more loci from SNP were considered to measure genetic relatedness than those from the SSR.
        4.
        2001.06 KCI 등재 서비스 종료(열람 제한)
        Genetic diversity of 47 East-Asian vegetable soybean was characterized by means of agro-morphological traits and RAPD markers. A field trial was conducted to evaluate 14 agro-morphological traits. To study RAPD-based DNA analysis, a total of sixty 10-mer random primers were screened. Of these, 23 polymorphic markers in 16 varieties used for screening. Among 207 markers amplified, 48 were polymorphic for at least one pairwise comparison within the 47 varieties. A higher differentiation level between varieties was observed by using RAPD markers compared to morphological markers. Correspondence analysis using both types of marker showed that RAPD data could fully discriminate between all varieties, whereas morphological markers could not achieve a complete discrimination. Genetic distances between the varieties were estimated from simple matching coefficients, ranged from 0.0 to 0.640 with an average of 0.295~pm 0.131 for morphological traits and 0.042 to 0.625 with an average of 0.336~pm 0.099 for RAPD data, respectively. Cluster analysis based on genetic dissimilarity of these varieties gave rise to 4 distinct groups. The clustering results based on RAPDs did not match with those based on morphological traits. Geographical distribution of most varieties in each of the groups were not well defined. The results suggested that the level of genetic diversity within this group of East-Asian vegetable soybean varieties was sufficient for a breeding program and can be used to establish genetic relationships among them with unknown or unrelated pedigrees.