The BOES (BOAO Echelle Spectrograph), a fiber-fed echelle spectrograph of the BOAO 1.8 m telescope, has been designed and now is being manufactured. The BOES follows a white pupil design collimated with two off-axis parabolic mirrors. The 136mm collimating beam leaving the 41.59 grooves/mm R4 echelle grating is refocused near the narrow folding mirror. Through the two cross-disperser prisms and ϕ250mm(f/1.5) ϕ250mm(f/1.5) transmission camera, the beam images on EEV 2k×4k 2k×4k CCD. The BOES can take the wavelength range of 3700 to 10100Å at a single spot with spectral resolution R = 20000 to 40000 depending on the fiber set employed. We describe the key sciences and performance, current status of construction, and future plan of the BOES.
We have conducted BV RI CCD surface photometry of three spiral galaxies ESO 598-G009, NGC 1515 and NGC 7456. In order to understand the morphological properties and luminosity distribution characteristics for each galaxy, we derived isophotal map, position angle profile, ellipticity profile, luminosity profile, color profile and color contour map. ESO 598-G009, which has a bright bulge component and a ring, shows a trace of gravitational interaction. NGC 1515 is a spiral galaxy with a bar and dust lane. NGC 7456 shows typical characteristics of a late type spiral galaxy.
We present the development of a remote observation system runnig on world wide web (WWW). The system consists of a 30cm Schmidt Cassegrain telescope and ST-7 CCD camera. We built the controllers and drivers of the telescope and the control softwares including the network control. The self-developed techniques in the hard wares and softwares can be applied to other projects in Korea. Observers can access the system via WWW home page, to reserve observation times, to send control commands, to retrieve images and various information useful for observation. This system can be widely used by students and amateur astronomers as well as professional astronomers who need a lot of small telescope time.
The previous study of chemical evolution of the Galaxy is extended to the radial properties of the Galactic disk. The present model includes radial dependency of the time-dependent bimodal IMF, radial flow of material in the disk, and the change of type I supernova explosion rate with radial distance from the disk center as model parameters and observed gas and stellar density distributions and metallicity abundance gradient as observational constraints. The results of two models in this study explain the observed gas and stellar density distributions well, with the slope of the gas density gradient in the region of 4.5 kpc<r<12kpc as -0.136dex/kpc in model Y1 and -0.123dex/kpc in model Y2, respectively, which fit well the observed gradient of -0.l1dex/kpc. The abundance gradient reproduced in model Y1 is getting flatter with decreasing radius, while that in model Y2 is getting steeper, which fits better the observed abundance gradient. This result shows the necessity of exponentially increasing type I supernova explosion rate with decreasing radius in order to explain the observed abundance gradient in the disk. The fitness of observed density distribution and star formation rate distribution justifies the reliability of time-dependent bimodal IMF as a compound quantitative chemical evolution model of the Galaxy. The temporal variations of metallicity gradients for carbon, nitrogen and oxygen are also shown.
We present test results of time-series CCD photometry to investigate the photometric precision of the BOAO (Bohyunsan Optical Astronomy Observatory) 1.8m telescope. A well-known field of the old open cluster M67, which includes two pulsating blue stragglers and two W UMa type binaries, was monitored for 3.5 hours on February 22, 1996. We have collected 148 V frames and 3 B frames. Photometric noises which consist mainly of photon noise and scintillation noise, were lowered down to about 1.9 mmag for stars of 10.m5 in M67 with exposure time of 20 seconds. From the C-M diagram for M67, a number of observational properties were derived; E(B-V) = 0.03, (V-Mv)o = 9.6, Age = 4 Gyr. We obtained light curves for four known variable stars and confirmed their variational characteristics. The pulsating blue stragglers show a low amplitude (about 0.01 mag) of light variation.
The evolution of the Galaxy is examined by the halo-disk model, using the time-dependent bimodal IMF and contraints such as cumulative metallicity distribution, differential metallicity distribution and PDMF of main sequence stars. The time scale of the Galactic halo formation is about 3Gyr during which the most of halo stars and metal abundance are formed and ∼ 95 of the initial halo mass falls to the disk. The G-dwarf problem could be explained by the time-dependent bimodal IMF which is suppressed for low mass stars at the early phase (t < 1Gyr) of the disk evolution. However, the importance of this problem is much weakened by the Pagel's differential metallicity distribution which leads to less initial metal enrichment and many long-lived metal-poor stars with Z < 1 / 3 Z ⊙ The observational distribution of abundance ratios of C, N, O elements with respect to [Fe/H] could be reproduced by the halo-disk model, including the contribution of iron product by SNIs of intermediate mass stars. The initial enrichment of elements in the disk could be explained by the halo-disk model, resulting in the slight decrease and then the increase in the slopes of the [N/Fe]- and [C/Fe]-distributions with increasing [Fe/H] in the range of [Fe/H] < -1.